Inverse Scattering Problems for Sturm--Liouville Operators with Spectral Parameter Dependent on Boundary Conditions
Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 65-74
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider the inverse scattering problem for the Sturm–Liouville operator on the half-line $[0,\infty)$ with Herglotz function of spectral parameter in the boundary condition. The scattering data of the problem is defined, and its properties are investigated. The main equation is obtained for the solution of the inverse problem and it is shown that the potential is uniquely recovered in terms of the scattering data.
Keywords:
Sturm–Liouville operator, inverse problem, scattering data, spectral parameter.
@article{MZM_2018_103_1_a5,
author = {Ying Yang and Guangsheng Wei},
title = {Inverse {Scattering} {Problems} for {Sturm--Liouville} {Operators} with {Spectral} {Parameter} {Dependent} on {Boundary} {Conditions}},
journal = {Matemati\v{c}eskie zametki},
pages = {65--74},
publisher = {mathdoc},
volume = {103},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a5/}
}
TY - JOUR AU - Ying Yang AU - Guangsheng Wei TI - Inverse Scattering Problems for Sturm--Liouville Operators with Spectral Parameter Dependent on Boundary Conditions JO - Matematičeskie zametki PY - 2018 SP - 65 EP - 74 VL - 103 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a5/ LA - ru ID - MZM_2018_103_1_a5 ER -
%0 Journal Article %A Ying Yang %A Guangsheng Wei %T Inverse Scattering Problems for Sturm--Liouville Operators with Spectral Parameter Dependent on Boundary Conditions %J Matematičeskie zametki %D 2018 %P 65-74 %V 103 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a5/ %G ru %F MZM_2018_103_1_a5
Ying Yang; Guangsheng Wei. Inverse Scattering Problems for Sturm--Liouville Operators with Spectral Parameter Dependent on Boundary Conditions. Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 65-74. http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a5/