Proof of Dupuit's Assumption for the Free Boundary Problem in an Inhomogeneous Porous Medium
Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 49-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

For free boundary problems describing steady groundwater flows, the asymptotic behavior of solutions is studied in the situation where the scale in one of the spatial directions is much less than that in the other directions. The convergence of solutions to a certain limit is proved. Properties of the limit solution agree with the assumption known as Dupuit's assumption in engineering applications, which customarily serves as a basis for constructing approximate models of groundwater flows in thin aquifers.
Keywords: variational inequality, Darcy's law, dam problem.
@article{MZM_2018_103_1_a4,
     author = {A. Yu. Belyaev},
     title = {Proof of {Dupuit's} {Assumption} for the {Free} {Boundary} {Problem} in an {Inhomogeneous} {Porous} {Medium}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {49--64},
     publisher = {mathdoc},
     volume = {103},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a4/}
}
TY  - JOUR
AU  - A. Yu. Belyaev
TI  - Proof of Dupuit's Assumption for the Free Boundary Problem in an Inhomogeneous Porous Medium
JO  - Matematičeskie zametki
PY  - 2018
SP  - 49
EP  - 64
VL  - 103
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a4/
LA  - ru
ID  - MZM_2018_103_1_a4
ER  - 
%0 Journal Article
%A A. Yu. Belyaev
%T Proof of Dupuit's Assumption for the Free Boundary Problem in an Inhomogeneous Porous Medium
%J Matematičeskie zametki
%D 2018
%P 49-64
%V 103
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a4/
%G ru
%F MZM_2018_103_1_a4
A. Yu. Belyaev. Proof of Dupuit's Assumption for the Free Boundary Problem in an Inhomogeneous Porous Medium. Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 49-64. http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a4/

[1] P. Ya. Polubarinova-Kochina, Teoriya dvizheniya gruntovykh vod, Nauka, M., 1977 | MR | Zbl

[2] J. Bear, Hydraulics of Groundwater, McGraw-Hill, New York, 1979

[3] H. W. Alt, “Strömungen durch inhomogene poröse Medien mit freiem Rand”, J. Reine Angew. Math., 305 (1979), 89–115 | MR | Zbl

[4] H. Brézis, D. Kinderlehrer, G. Stampacchia, “Sur une nouvelle formulation du problème d'éqoulement à travers une digue”, C. R. Acad. Sci. Paris Sér. A, 287:9 (1978), 711–714 | MR | Zbl

[5] A. Yu. Beliaev, “Solvability of free boundary problems for steady groundwater flow”, European J. Appl. Math., 26:6 (2015), 821–847 | DOI | MR

[6] A. Yu. Belyaev, I. O. Yushmanov, “Ob odnom variatsionnom printsipe dlya zadach o statsionarnom dvizhenii gruntovykh vod so svobodnoi poverkhnostyu”, Izv. RAN. MZhG, 50:4 (2015), 92–109 | MR | Zbl

[7] W. Heber Green, G. A. Ampt, “Studies in soil physics. Part I. The flow of air and water through soils”, J. Agricultural. Sci., 4:1 (1911), 1–24 | DOI

[8] J. R. Philip, “An infiltration equation with physical significance”, Soil Sci., 77:2 (1954), 153–158 | DOI

[9] M. Chipot, “Variational Inequalities and Flow in Porous Media”, Appl. Math. Sci., 52, Springer, New York, 1984 | DOI | MR | Zbl

[10] C. Baiocchi, V. Comincioli, E. Magenes, G. A. Pozzi, “Free boundary problems in the theory of fluid flow through porous media: existence and uniqueness theorems”, Ann. Mat. Pura Appl. (4), 97 (1973), 1–82 | DOI | MR | Zbl

[11] A. Fridman, Variatsionnye printsipy i zadachi so svobodnymi granitsami, Nauka, M., 1990 | MR | Zbl

[12] K. Baiokki, A. Kapelo, Variatsionnye i kvazivariatsionnye neravenstva. Prilozheniya k zadacham so svobodnoi granitsei, Nauka, M., 1988 | MR

[13] C. Baiocchi, A. Friedman, “A filtration problem in a porous medium with variable permeability”, Ann. Mat. Pura Appl. (4), 114 (1977), 377–393 | DOI | MR | Zbl