Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_103_1_a3, author = {A. Balobanov and D. A. Shabanov}, title = {On the {Number} of {Independent} {Sets} in {Simple} {Hypergraphs}}, journal = {Matemati\v{c}eskie zametki}, pages = {38--48}, publisher = {mathdoc}, volume = {103}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a3/} }
A. Balobanov; D. A. Shabanov. On the Number of Independent Sets in Simple Hypergraphs. Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 38-48. http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a3/
[1] A. B. Dainyak, A. A. Sapozhenko, “Nezavisimye mnozhestva v grafakh”, Diskret. matem., 28:1 (2016), 44–77 | DOI | MR | Zbl
[2] N. Alon, “Independent sets in regular graphs and sum-free subsets of finite groups”, Israel J. Math., 73:2 (1991), 247–256 | DOI | MR | Zbl
[3] J. Kahn, “An entropy approach to the hard-core model on bipartite Graphs”, Combin. Probab. Comput., 10:3 (2001), 219–237 | DOI | MR | Zbl
[4] Y. Zhao, “The number of independent sets in a regular graph”, Combin. Probab. Comput., 19:2 (2010), 315–320 | DOI | MR | Zbl
[5] J. Copper, D. Mubayi, “Counting independent sets in triangle-free graphs”, Proc. Amer. Math. Soc., 142:10 (2014), 3325–3334 | DOI | MR | Zbl
[6] J. Cutler, A. J. Radcliffe, “Hypergraph independent sets”, Combin. Probab. Comput., 22:1 (2013), 9–20 | DOI | MR | Zbl
[7] E. Ordentlich, R. Roth, “Independent sets in regular hypergraphs and multidimensional runlength-limited constraints”, SIAM J. Discrete Math., 17:4 (2004), 615–623 | DOI | MR | Zbl
[8] D. Saxton, A. Thomason, “Hypergraph containers”, Invent. math., 201:3 (2015), 925–992 | DOI | MR | Zbl
[9] J. Copper, K. Dutta, D. Mubayi, “Counting independent sets in hypergraphs”, Combin. Probab. Comput., 23:4 (2014), 539–550 | DOI | MR | Zbl
[10] R. Duke, H. Lefmann, V. Rödl, “On uncrowded hypergraphs”, Random Structures Algorithms, 6:2-3 (1995), 209–213 | DOI | MR | Zbl