On the Number of Independent Sets in Simple Hypergraphs
Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 38-48
Voir la notice de l'article provenant de la source Math-Net.Ru
Extremal problems on the number of $j$-independent sets in homogeneous simple hypergraphs are studied. Nearly optimal results on the maximum number of independent sets for the class of simple regular hypergraphs and on the minimum number of independent sets for the class of simple hypergraphs with given mean degree of vertices are obtained.
Keywords:
hypergraph, simple hypergraph, $j$-independent set, method of containers.
@article{MZM_2018_103_1_a3,
author = {A. Balobanov and D. A. Shabanov},
title = {On the {Number} of {Independent} {Sets} in {Simple} {Hypergraphs}},
journal = {Matemati\v{c}eskie zametki},
pages = {38--48},
publisher = {mathdoc},
volume = {103},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a3/}
}
A. Balobanov; D. A. Shabanov. On the Number of Independent Sets in Simple Hypergraphs. Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 38-48. http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a3/