On the Number of Independent Sets in Simple Hypergraphs
Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 38-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

Extremal problems on the number of $j$-independent sets in homogeneous simple hypergraphs are studied. Nearly optimal results on the maximum number of independent sets for the class of simple regular hypergraphs and on the minimum number of independent sets for the class of simple hypergraphs with given mean degree of vertices are obtained.
Keywords: hypergraph, simple hypergraph, $j$-independent set, method of containers.
@article{MZM_2018_103_1_a3,
     author = {A. Balobanov and D. A. Shabanov},
     title = {On the {Number} of {Independent} {Sets} in {Simple} {Hypergraphs}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {38--48},
     publisher = {mathdoc},
     volume = {103},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a3/}
}
TY  - JOUR
AU  - A. Balobanov
AU  - D. A. Shabanov
TI  - On the Number of Independent Sets in Simple Hypergraphs
JO  - Matematičeskie zametki
PY  - 2018
SP  - 38
EP  - 48
VL  - 103
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a3/
LA  - ru
ID  - MZM_2018_103_1_a3
ER  - 
%0 Journal Article
%A A. Balobanov
%A D. A. Shabanov
%T On the Number of Independent Sets in Simple Hypergraphs
%J Matematičeskie zametki
%D 2018
%P 38-48
%V 103
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a3/
%G ru
%F MZM_2018_103_1_a3
A. Balobanov; D. A. Shabanov. On the Number of Independent Sets in Simple Hypergraphs. Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 38-48. http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a3/

[1] A. B. Dainyak, A. A. Sapozhenko, “Nezavisimye mnozhestva v grafakh”, Diskret. matem., 28:1 (2016), 44–77 | DOI | MR | Zbl

[2] N. Alon, “Independent sets in regular graphs and sum-free subsets of finite groups”, Israel J. Math., 73:2 (1991), 247–256 | DOI | MR | Zbl

[3] J. Kahn, “An entropy approach to the hard-core model on bipartite Graphs”, Combin. Probab. Comput., 10:3 (2001), 219–237 | DOI | MR | Zbl

[4] Y. Zhao, “The number of independent sets in a regular graph”, Combin. Probab. Comput., 19:2 (2010), 315–320 | DOI | MR | Zbl

[5] J. Copper, D. Mubayi, “Counting independent sets in triangle-free graphs”, Proc. Amer. Math. Soc., 142:10 (2014), 3325–3334 | DOI | MR | Zbl

[6] J. Cutler, A. J. Radcliffe, “Hypergraph independent sets”, Combin. Probab. Comput., 22:1 (2013), 9–20 | DOI | MR | Zbl

[7] E. Ordentlich, R. Roth, “Independent sets in regular hypergraphs and multidimensional runlength-limited constraints”, SIAM J. Discrete Math., 17:4 (2004), 615–623 | DOI | MR | Zbl

[8] D. Saxton, A. Thomason, “Hypergraph containers”, Invent. math., 201:3 (2015), 925–992 | DOI | MR | Zbl

[9] J. Copper, K. Dutta, D. Mubayi, “Counting independent sets in hypergraphs”, Combin. Probab. Comput., 23:4 (2014), 539–550 | DOI | MR | Zbl

[10] R. Duke, H. Lefmann, V. Rödl, “On uncrowded hypergraphs”, Random Structures Algorithms, 6:2-3 (1995), 209–213 | DOI | MR | Zbl

[11] O. Ore, Teoriya grafov, Nauka, M., 1980 | MR | Zbl