Nonexistence of Solutions of a Semilinear Biharmonic Equation with Singular Potential
Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 27-37
Voir la notice de l'article provenant de la source Math-Net.Ru
The nonexistence of a global solution of the semilinear elliptic equation $\Delta^{2}u-(C/|x|^{4})u-|x|^{\sigma}|u|^{q}=0$ in the exterior of a ball is studied. A sufficient condition for the nonexistence of a global solution is established. The proof is based on the test function method.
Keywords:
semilinear elliptic equation, biharmonic operator, critical exponent, test function method.
Mots-clés : global solution
Mots-clés : global solution
@article{MZM_2018_103_1_a2,
author = {Sh. G. Bagyrov},
title = {Nonexistence of {Solutions} of a {Semilinear} {Biharmonic} {Equation} with {Singular} {Potential}},
journal = {Matemati\v{c}eskie zametki},
pages = {27--37},
publisher = {mathdoc},
volume = {103},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a2/}
}
Sh. G. Bagyrov. Nonexistence of Solutions of a Semilinear Biharmonic Equation with Singular Potential. Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 27-37. http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a2/