Nonexistence of Solutions of a Semilinear Biharmonic Equation with Singular Potential
Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 27-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

The nonexistence of a global solution of the semilinear elliptic equation $\Delta^{2}u-(C/|x|^{4})u-|x|^{\sigma}|u|^{q}=0$ in the exterior of a ball is studied. A sufficient condition for the nonexistence of a global solution is established. The proof is based on the test function method.
Keywords: semilinear elliptic equation, biharmonic operator, critical exponent, test function method.
Mots-clés : global solution
@article{MZM_2018_103_1_a2,
     author = {Sh. G. Bagyrov},
     title = {Nonexistence of {Solutions} of a {Semilinear} {Biharmonic} {Equation} with {Singular} {Potential}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {27--37},
     publisher = {mathdoc},
     volume = {103},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a2/}
}
TY  - JOUR
AU  - Sh. G. Bagyrov
TI  - Nonexistence of Solutions of a Semilinear Biharmonic Equation with Singular Potential
JO  - Matematičeskie zametki
PY  - 2018
SP  - 27
EP  - 37
VL  - 103
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a2/
LA  - ru
ID  - MZM_2018_103_1_a2
ER  - 
%0 Journal Article
%A Sh. G. Bagyrov
%T Nonexistence of Solutions of a Semilinear Biharmonic Equation with Singular Potential
%J Matematičeskie zametki
%D 2018
%P 27-37
%V 103
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a2/
%G ru
%F MZM_2018_103_1_a2
Sh. G. Bagyrov. Nonexistence of Solutions of a Semilinear Biharmonic Equation with Singular Potential. Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 27-37. http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a2/

[1] E. Mitidieri, S. I. Pokhozhaev, “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, Nauka, M., 2001, 3–383 | MR | Zbl

[2] E. Mitidieri, S. I. Pokhozhaev, “Otsutstvie globalnykh reshenii kvazilineinykh ellipticheskikh neravenstv”, Dokl. AN, 359:4 (1998), 456–460 | MR | Zbl

[3] E. Mitidieri, S. I. Pokhozhaev, “Otsutstvie polozhitelnykh reshenii dlya kvazilineinykh ellipticheskikh zadach v $\mathbb R^N$”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 18, Tr. MIAN, 227, Nauka, M., 1999, 192–222 | MR | Zbl

[4] B. Gidas, J. Spruck, “Global and local behavior of positive solutions of linear elliptic equations”, Comm. Pure Appl. Math., 34:4 (1981), 525–598 | DOI | MR | Zbl

[5] H. Brezis, Z. Dupaigne, A. Tesei, “On a semilinear elliptic equation with inverse-square potential”, Selecta Math. (N.S.), 11:1 (2005), 1–7 | DOI | MR | Zbl

[6] M. F. Bidaut-Véron, S. Pohozaev, “Nonexistence results and estimates for some nonlinear elliptic problems”, J. Anal. Math., 84 (2001), 1–49 | DOI | MR | Zbl

[7] J. Serrin, H. Zou, “Nonexistence of positive solutions of Lane-Emden system”, Differential Integral Equations, 9:4 (1996), 635–653 | MR | Zbl

[8] J. Serrin, “Positive solutions of prescribed mean curvature problem”, Calculus of Variations and Partial Differential Equations, Lect. Notes in Math., 1340, Springer-Verlag, Berlin, 1998, 248–255 | DOI | MR | Zbl

[9] A. A. Konkov, “O povedenii na beskonechnosti reshenii odnogo klassa nelineinykh uravnenii vtorogo poryadka”, Matem. zametki, 60:1 (1996), 30–39 | DOI | MR | Zbl

[10] A. A. Kon'kov, “On solutions of quasi-linear elliptic inequalities containing terms with lower-order derivatives”, Nonlinear Anal., 90 (2013), 121–134 | DOI | MR | Zbl

[11] A. A. Kon'kov, “On properties of solutions of quasilinear second-order elliptic inequalities”, Nonlinear Anal., 123-124 (2015), 89–114 | DOI | MR | Zbl

[12] Sh. G. Bagyrov, “Otsutstvie polozhitelnykh reshenii dlya polulineinogo uravneniya vtorogo poryadka s periodicheskimi koeffitsientami po vremeni”, Differents. uravneniya, 50:4 (2014), 551–555 | DOI | MR | Zbl

[13] Sh. H. Bagirov, M. J. Aliyev, “On absence of solutions of a semi-linear elliptic equation with biharmonic operator in the exterior of a ball”, Trans. NAS of Azerbaijan, Issue Math., 36:4 (2016), 63–69

[14] G. G. Laptev, “Ob otsutstvii reshenii odnogo klassa singulyarnykh polulineinykh differentsialnykh neravenstv”, Funktsionalnye prostranstva, garmonicheskii analiz, differentsialnye uravneniya, Tr. MIAN, 232, Nauka, M., 2001, 223–235 | MR | Zbl

[15] Yu. V. Volodin, “O kriticheskikh pokazatelyakh nekotorykh polulineinykh kraevykh zadach s bigarmonicheskim operatorom vo vneshnosti shara”, Matem. zametki, 79:2 (2006), 201–212 | DOI | MR | Zbl

[16] Yu. V. Volodin, “Kriticheskie pokazateli polulineinykh kraevykh zadach s bigarmonicheskim operatorom vo vneshnosti shara s kraevymi usloviyami pervogo tipa”, Uch. zap. Rossiiskogo gos. sots. un-ta, 2009, no. 8, 208–215

[17] X. Xu, “Uniqueness theorem for the entire positive solutions of biharmonic equations in $\mathbb R^{n}$”, Proc. Roy. Soc. Edinburgh Sect. A, 130:3 (2000), 651–670 | MR | Zbl

[18] M. Ghergu, S. D. Taliaferro, “Nonexistence of positive supersolutions of nonlinear biharmonic equations without the maximum principle”, Comm. Partial Differential Equations, 40:6 (2015), 1029–1069 | DOI | MR | Zbl

[19] P. C. Carrião, R. Demarque, O. H. Miyagaki, “Nonlinear biharmonic problems with singular potentials”, Commun. Pure Appl. Anal., 13:6 (2014), 2141–2154 | DOI | MR | Zbl

[20] Y. Yao, R. Wang, Y. Shen, “Notrivial solution for a class of semilinear biharmonic equation involving critical exponents”, Acta Math. Sci. Ser. B Engl. Ed., 27:3 (2007), 509–514 | DOI | MR | Zbl