A Priori Estimates of the Solution of the Problem of the Unidirectional Thermogravitational Motion of a Viscous Liquid in the Plane Channel
Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 147-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an initial boundary-value problem describing the unidirectional motion of a liquid in the Oberbeck–Boussinesq model in a plane channel with rigid immovable walls on which the temperature distribution is given (or the upper wall is heat-insulated). For this problem, we obtain a priori estimates, find an exact stationary solution, and determine conditions under which the solution converges to its stationary regime.
Keywords: initial boundary-value problem, inverse problem, a priori estimate.
@article{MZM_2018_103_1_a12,
     author = {E. N. Cheremnykh},
     title = {A {Priori} {Estimates} of the {Solution} of the {Problem} of the {Unidirectional} {Thermogravitational} {Motion} of a {Viscous} {Liquid} in the {Plane} {Channel}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {147--157},
     publisher = {mathdoc},
     volume = {103},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a12/}
}
TY  - JOUR
AU  - E. N. Cheremnykh
TI  - A Priori Estimates of the Solution of the Problem of the Unidirectional Thermogravitational Motion of a Viscous Liquid in the Plane Channel
JO  - Matematičeskie zametki
PY  - 2018
SP  - 147
EP  - 157
VL  - 103
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a12/
LA  - ru
ID  - MZM_2018_103_1_a12
ER  - 
%0 Journal Article
%A E. N. Cheremnykh
%T A Priori Estimates of the Solution of the Problem of the Unidirectional Thermogravitational Motion of a Viscous Liquid in the Plane Channel
%J Matematičeskie zametki
%D 2018
%P 147-157
%V 103
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a12/
%G ru
%F MZM_2018_103_1_a12
E. N. Cheremnykh. A Priori Estimates of the Solution of the Problem of the Unidirectional Thermogravitational Motion of a Viscous Liquid in the Plane Channel. Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 147-157. http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a12/

[1] R. B. Birikh, “Thermocapillary convection in a horizontal layer of liquid”, J. Appl. Mech. Tech. Phys., 7:3 (1966), 43–44 | DOI

[2] V. L. Katkov, “Tochnye resheniya nekotorykh zadach konvektsii”, PMM, 32:3 (1968), 482–487 | Zbl

[3] V. V. Pukhnachev, “Nestatsionarnye analogi resheniya Birikha”, Izv. Altaiskogo gos. un-ta, 2011, no. 1-2, 62–69

[4] V. K. Andreev, Yu. A. Gaponenko, O. N. Goncharova, V. V. Pukhnachev, Mathematical Models of Convection, De Gruyter Stud. Math. Phys., 5, Walter de Gruyter, Berlin, 2012 | MR | Zbl

[5] V. K. Andreev, E. N. Cheremnykh, “Sovmestnoe polzuschee dvizhenie trekh vyazkikh zhidkostei v ploskom sloe: apriornye otsenki i skhodimost k statsionarnomu rezhimu”, Sib. zhurn. industr. matem., 19:1 (2016), 3–17 | DOI | MR | Zbl