A Priori Estimates of the Solution of the Problem of the Unidirectional Thermogravitational Motion of a Viscous Liquid in the Plane Channel
Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 147-157
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider an initial boundary-value problem describing the unidirectional motion of a liquid in the Oberbeck–Boussinesq model in a plane channel with rigid immovable walls on which the temperature distribution is given (or the upper wall is heat-insulated). For this problem, we obtain a priori estimates, find an exact stationary solution, and determine conditions under which the solution converges to its stationary regime.
Keywords:
initial boundary-value problem, inverse problem, a priori estimate.
@article{MZM_2018_103_1_a12,
author = {E. N. Cheremnykh},
title = {A {Priori} {Estimates} of the {Solution} of the {Problem} of the {Unidirectional} {Thermogravitational} {Motion} of a {Viscous} {Liquid} in the {Plane} {Channel}},
journal = {Matemati\v{c}eskie zametki},
pages = {147--157},
publisher = {mathdoc},
volume = {103},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a12/}
}
TY - JOUR AU - E. N. Cheremnykh TI - A Priori Estimates of the Solution of the Problem of the Unidirectional Thermogravitational Motion of a Viscous Liquid in the Plane Channel JO - Matematičeskie zametki PY - 2018 SP - 147 EP - 157 VL - 103 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a12/ LA - ru ID - MZM_2018_103_1_a12 ER -
%0 Journal Article %A E. N. Cheremnykh %T A Priori Estimates of the Solution of the Problem of the Unidirectional Thermogravitational Motion of a Viscous Liquid in the Plane Channel %J Matematičeskie zametki %D 2018 %P 147-157 %V 103 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a12/ %G ru %F MZM_2018_103_1_a12
E. N. Cheremnykh. A Priori Estimates of the Solution of the Problem of the Unidirectional Thermogravitational Motion of a Viscous Liquid in the Plane Channel. Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 147-157. http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a12/