Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_103_1_a11, author = {Zh. D. Totieva and D. K. Durdiev}, title = {The {Problem} of {Finding} the {One-Dimensional} {Kernel} of the {Thermoviscoelasticity} {Equation}}, journal = {Matemati\v{c}eskie zametki}, pages = {129--146}, publisher = {mathdoc}, volume = {103}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a11/} }
TY - JOUR AU - Zh. D. Totieva AU - D. K. Durdiev TI - The Problem of Finding the One-Dimensional Kernel of the Thermoviscoelasticity Equation JO - Matematičeskie zametki PY - 2018 SP - 129 EP - 146 VL - 103 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a11/ LA - ru ID - MZM_2018_103_1_a11 ER -
Zh. D. Totieva; D. K. Durdiev. The Problem of Finding the One-Dimensional Kernel of the Thermoviscoelasticity Equation. Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 129-146. http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a11/
[1] M. Grasselli, S. I. Kabanikhin, A. Lorentsi, “Obratnaya zadacha dlya integrodifferentsialnogo uravneniya”, Sib. matem. zhurn., 33:1 (1992), 58–68 | MR | Zbl
[2] A. Lorenzi, E. Paparoni, “Direct and inverse problems in the theory of materials with memory”, Rend. Sem. Mat. Univ. Padova, 87 (1992), 105–138 | MR | Zbl
[3] A. Lorenzi, V. I. Priimenko, “Identification problems related to electro-magneto-elastic interactions”, J. Inverse Ill-Posed Probl., 4:2 (1996), 115–143 | DOI | MR | Zbl
[4] J. Janno, L. Von Wolfersdorf, “Inverse problems for identification of memory kernels in viscoelasticity”, Math. Methods Appl. Sci., 20:4 (1997), 291–314 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[5] A. L. Bukhgeim, N. I. Kalinina, V. B. Kardakov, “Dva metoda v obratnoi zadache opredeleniya pamyati”, Sib. matem. zhurn., 41:4 (2000), 767–776 | MR | Zbl
[6] D. K. Durdiev, Zh. D. Totieva, “Zadacha ob opredelenii odnomernogo yadra uravneniya vyazkouprugosti”, Sib. zhurn. industr. matem., 16:2 (2013), 72–82 | MR | Zbl
[7] D. K. Durdiev, “Obratnaya zadacha opredeleniya dvukh koeffitsientov v odnom integrodifferentsialnom volnovom uravnenii”, Sib. zhurn. industr. matem., 12:3 (2009), 28–40 | MR | Zbl
[8] D. K. Durdiev, Zh. Sh. Safarov, “Obratnaya zadacha ob opredelenii odnomernogo yadra uravneniya vyazkouprugosti v ogranichennoi oblasti”, Matem. zametki, 97:6 (2015), 855–867 | DOI | MR | Zbl
[9] V. G. Romanov, “Inverse problems for differential equations with memory”, Eurasian J. Math. and Comput. Appl., 2:4 (2014), 51–80
[10] V. G. Romanov, “Otsenki ustoichivosti resheniya v zadache ob opredelenii yadra uravneniya vyazkouprugosti”, Sib. zhurn. industr. matem., 15:1 (2012), 86–98 | MR | Zbl
[11] V. G. Romanov, “Dvumernaya obratnaya zadacha dlya uravneniya vyazkouprugosti”, Sib. matem. zhurn., 53:6 (2012), 1401–1412 | MR | Zbl
[12] A. Lorenzi, V. G. Romanov, “Recovering two Lamé kernels in a viscoelastic system”, Inverse Probl. Imaging, 5:2 (2011), 431–464 | DOI | MR | Zbl
[13] D. K. Durdiev, Zh. D. Totieva, “Zadacha ob opredelenii mnogomernogo yadra uravneniya vyazkouprugosti”, Vladikavk. matem. zhurn., 17:4 (2015), 18–43
[14] D. K. Durdiev, Obratnye zadachi dlya sred s posledeistviem, Turon – Ikbol, Tashkent, 2014
[15] V. G. Romanov, Ustoichivost v obratnykh zadachakh, Nauchnyi Mir, M., 2005 | MR | Zbl
[16] D. K. Durdiev, “Obratnaya zadacha dlya sistemy uravnenii termouprugosti v vertikalno-neodnorodnoi nesvyaznoi srede s pamyatyu”, Differents. uravneniya, 45:9 (2009), 1229–1236 | MR | Zbl
[17] A. D. Kovalenko, Termouprugost, Vischa shkola, Kiev, 1975
[18] Zh. D. Tuaeva, “Mnogomernaya matematicheskaya model seismiki s pamyatyu”, Issledovaniya po differentsialnym uravneniyam i matematicheskomu modelirovaniyu, VNTs RAN, Vladikavkaz, 2008, 297–306
[19] V. G. Yakhno, Obratnye zadachi dlya differentsialnykh uravnenii uprugosti, Nauka, Novosibirsk, 1990 | MR | Zbl