The Problem of Finding the One-Dimensional Kernel of the Thermoviscoelasticity Equation
Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 129-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of determining the kernel $h(t)$, $t\in[0,T]$, appearing in the system of integro-differential thermoviscoelasticity equations is considered. It is assumed that the coefficients of the equations depend only on one space variable. The inverse problem is replaced by the equivalent system of integral equations for unknown functions. The contraction mapping principle with weighted norms is applied to this system in the space of continuous functions. A global unique solvability theorem is proved and an estimate of the stability of the solution of the inverse problem is obtained.
Keywords: inverse problem, stability, delta function
Mots-clés : Lamé coefficients, kernel.
@article{MZM_2018_103_1_a11,
     author = {Zh. D. Totieva and D. K. Durdiev},
     title = {The {Problem} of {Finding} the {One-Dimensional} {Kernel} of the {Thermoviscoelasticity} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {129--146},
     publisher = {mathdoc},
     volume = {103},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a11/}
}
TY  - JOUR
AU  - Zh. D. Totieva
AU  - D. K. Durdiev
TI  - The Problem of Finding the One-Dimensional Kernel of the Thermoviscoelasticity Equation
JO  - Matematičeskie zametki
PY  - 2018
SP  - 129
EP  - 146
VL  - 103
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a11/
LA  - ru
ID  - MZM_2018_103_1_a11
ER  - 
%0 Journal Article
%A Zh. D. Totieva
%A D. K. Durdiev
%T The Problem of Finding the One-Dimensional Kernel of the Thermoviscoelasticity Equation
%J Matematičeskie zametki
%D 2018
%P 129-146
%V 103
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a11/
%G ru
%F MZM_2018_103_1_a11
Zh. D. Totieva; D. K. Durdiev. The Problem of Finding the One-Dimensional Kernel of the Thermoviscoelasticity Equation. Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 129-146. http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a11/

[1] M. Grasselli, S. I. Kabanikhin, A. Lorentsi, “Obratnaya zadacha dlya integrodifferentsialnogo uravneniya”, Sib. matem. zhurn., 33:1 (1992), 58–68 | MR | Zbl

[2] A. Lorenzi, E. Paparoni, “Direct and inverse problems in the theory of materials with memory”, Rend. Sem. Mat. Univ. Padova, 87 (1992), 105–138 | MR | Zbl

[3] A. Lorenzi, V. I. Priimenko, “Identification problems related to electro-magneto-elastic interactions”, J. Inverse Ill-Posed Probl., 4:2 (1996), 115–143 | DOI | MR | Zbl

[4] J. Janno, L. Von Wolfersdorf, “Inverse problems for identification of memory kernels in viscoelasticity”, Math. Methods Appl. Sci., 20:4 (1997), 291–314 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[5] A. L. Bukhgeim, N. I. Kalinina, V. B. Kardakov, “Dva metoda v obratnoi zadache opredeleniya pamyati”, Sib. matem. zhurn., 41:4 (2000), 767–776 | MR | Zbl

[6] D. K. Durdiev, Zh. D. Totieva, “Zadacha ob opredelenii odnomernogo yadra uravneniya vyazkouprugosti”, Sib. zhurn. industr. matem., 16:2 (2013), 72–82 | MR | Zbl

[7] D. K. Durdiev, “Obratnaya zadacha opredeleniya dvukh koeffitsientov v odnom integrodifferentsialnom volnovom uravnenii”, Sib. zhurn. industr. matem., 12:3 (2009), 28–40 | MR | Zbl

[8] D. K. Durdiev, Zh. Sh. Safarov, “Obratnaya zadacha ob opredelenii odnomernogo yadra uravneniya vyazkouprugosti v ogranichennoi oblasti”, Matem. zametki, 97:6 (2015), 855–867 | DOI | MR | Zbl

[9] V. G. Romanov, “Inverse problems for differential equations with memory”, Eurasian J. Math. and Comput. Appl., 2:4 (2014), 51–80

[10] V. G. Romanov, “Otsenki ustoichivosti resheniya v zadache ob opredelenii yadra uravneniya vyazkouprugosti”, Sib. zhurn. industr. matem., 15:1 (2012), 86–98 | MR | Zbl

[11] V. G. Romanov, “Dvumernaya obratnaya zadacha dlya uravneniya vyazkouprugosti”, Sib. matem. zhurn., 53:6 (2012), 1401–1412 | MR | Zbl

[12] A. Lorenzi, V. G. Romanov, “Recovering two Lamé kernels in a viscoelastic system”, Inverse Probl. Imaging, 5:2 (2011), 431–464 | DOI | MR | Zbl

[13] D. K. Durdiev, Zh. D. Totieva, “Zadacha ob opredelenii mnogomernogo yadra uravneniya vyazkouprugosti”, Vladikavk. matem. zhurn., 17:4 (2015), 18–43

[14] D. K. Durdiev, Obratnye zadachi dlya sred s posledeistviem, Turon – Ikbol, Tashkent, 2014

[15] V. G. Romanov, Ustoichivost v obratnykh zadachakh, Nauchnyi Mir, M., 2005 | MR | Zbl

[16] D. K. Durdiev, “Obratnaya zadacha dlya sistemy uravnenii termouprugosti v vertikalno-neodnorodnoi nesvyaznoi srede s pamyatyu”, Differents. uravneniya, 45:9 (2009), 1229–1236 | MR | Zbl

[17] A. D. Kovalenko, Termouprugost, Vischa shkola, Kiev, 1975

[18] Zh. D. Tuaeva, “Mnogomernaya matematicheskaya model seismiki s pamyatyu”, Issledovaniya po differentsialnym uravneniyam i matematicheskomu modelirovaniyu, VNTs RAN, Vladikavkaz, 2008, 297–306

[19] V. G. Yakhno, Obratnye zadachi dlya differentsialnykh uravnenii uprugosti, Nauka, Novosibirsk, 1990 | MR | Zbl