Nonlinear Singular Integro-Differential Equations with an Arbitrary Parameter
Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 20-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

The maximally monotone operator method in real weighted Lebesgue spaces is used to study three different classes of nonlinear singular integro-differential equations with an arbitrary positive parameter. Under sufficiently clear on the nonlinearity, we prove existence and uniqueness theorems for the solution covering in particular, the linear case as well. In contrast to the previous papers in which other classes of nonlinear singular integral and integro-differential equations were studied, our study is based on the inversion of the superposition operator generating the nonlinearities of the equations under consideration and the establishment of the coercitivity of the inverse operator, as well as a generalization of the well-known Schleiff inequality.
Keywords: maximally monotone operator, nonlinear singular integro-differential equations.
@article{MZM_2018_103_1_a1,
     author = {S. N. Askhabov},
     title = {Nonlinear {Singular} {Integro-Differential} {Equations} with an {Arbitrary} {Parameter}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {20--26},
     publisher = {mathdoc},
     volume = {103},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a1/}
}
TY  - JOUR
AU  - S. N. Askhabov
TI  - Nonlinear Singular Integro-Differential Equations with an Arbitrary Parameter
JO  - Matematičeskie zametki
PY  - 2018
SP  - 20
EP  - 26
VL  - 103
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a1/
LA  - ru
ID  - MZM_2018_103_1_a1
ER  - 
%0 Journal Article
%A S. N. Askhabov
%T Nonlinear Singular Integro-Differential Equations with an Arbitrary Parameter
%J Matematičeskie zametki
%D 2018
%P 20-26
%V 103
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a1/
%G ru
%F MZM_2018_103_1_a1
S. N. Askhabov. Nonlinear Singular Integro-Differential Equations with an Arbitrary Parameter. Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 20-26. http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a1/

[1] Kh. Gaevskii, K. Greger, K. Zakharias, Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR | Zbl

[2] G. M. Magomedov, “Metod monotonnosti v teorii nelineinykh singulyarnykh integralnykh i integro-differentsialnykh uravnenii”, Differents. uravneniya, 13:6 (1977), 1106–1112 | MR | Zbl

[3] L.v. Wolfersdorf, “Monotonicity methods for nonlinear singular integral and integro-differential equations”, Z. Angew. Math. Mech., 63:6 (1983), 249–259 | DOI | MR | Zbl

[4] A. I. Guseinov, Kh. Sh. Mukhtarov, Vvedenie v teoriyu nelineinykh singulyarnykh integralnykh uravnenii, Nauka, M., 1980 | MR | Zbl

[5] S. N. Askhabov, Nelineinye singulyarnye integralnye uravneniya v prostranstvakh Lebega, Izd-vo Chechenskogo gos. un-ta, Groznyi, 2013

[6] Kh. M. Kogan, “Ob odnom singulyarnom integro-differentsialnom uravnenii”, Differents. uravneniya, 3:2 (1967), 278–293 | MR | Zbl

[7] M. Schleiff, “Untersuchungen einer linearen singularen Integrodifferentialgleichung der Tragflügeltheorie”, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe, 17 (1968), 981–1000 | MR | Zbl

[8] S. N. Askhabov, Nelineinye uravneniya tipa svertki, Fizmatlit, M., 2009 | MR

[9] S. N. Askhabov, “Nelineinye uravneniya tipa svertki v prostranstvakh Lebega”, Matem. zametki, 97:5 (2015), 643–654 | DOI | MR | Zbl