Subgroups, of Chevalley Groups over a Locally Finite Field, Defined by a Family of Additive Subgroups
Matematičeskie zametki, Tome 102 (2017) no. 6, pp. 857-865.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every elementary carpet of nonzero additive subgroups which is associated with a Chevalley group of a Lie rank exceeding one over a locally finite field coincides, up to conjugation by a diagonal element, with a carpet whose additive subgroups are equal to some chosen subfield of the ground field. A similar result is obtained for a full matrix carpet (a full net).
Keywords: elementary carpet, Chevalley group, carpet subgroup.
@article{MZM_2017_102_6_a6,
     author = {V. A. Koibaev and S. K. Kuklina and A. O. Likhacheva and Ya. N. Nuzhin},
     title = {Subgroups, of {Chevalley} {Groups} over a {Locally} {Finite} {Field,} {Defined} by a {Family} of {Additive} {Subgroups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {857--865},
     publisher = {mathdoc},
     volume = {102},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a6/}
}
TY  - JOUR
AU  - V. A. Koibaev
AU  - S. K. Kuklina
AU  - A. O. Likhacheva
AU  - Ya. N. Nuzhin
TI  - Subgroups, of Chevalley Groups over a Locally Finite Field, Defined by a Family of Additive Subgroups
JO  - Matematičeskie zametki
PY  - 2017
SP  - 857
EP  - 865
VL  - 102
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a6/
LA  - ru
ID  - MZM_2017_102_6_a6
ER  - 
%0 Journal Article
%A V. A. Koibaev
%A S. K. Kuklina
%A A. O. Likhacheva
%A Ya. N. Nuzhin
%T Subgroups, of Chevalley Groups over a Locally Finite Field, Defined by a Family of Additive Subgroups
%J Matematičeskie zametki
%D 2017
%P 857-865
%V 102
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a6/
%G ru
%F MZM_2017_102_6_a6
V. A. Koibaev; S. K. Kuklina; A. O. Likhacheva; Ya. N. Nuzhin. Subgroups, of Chevalley Groups over a Locally Finite Field, Defined by a Family of Additive Subgroups. Matematičeskie zametki, Tome 102 (2017) no. 6, pp. 857-865. http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a6/

[1] V. M. Levchuk, “Parabolicheskie podgruppy nekotorykh $ABA$-grupp”, Matem. zametki, 31:4 (1982), 509–525 | MR | Zbl

[2] K. Suzuki, “On parabolic subgroups of Chevalley groups over local rings”, Tôhoku Math. J. (2), 28:1 (1976), 57–66 | DOI | MR | Zbl

[3] N. A. Vavilov, “O parabolicheskikh podgruppakh grupp Shevalle nad polulokalnym koltsom”, Koltsa i lineinye gruppy, Zap. nauchn. sem. LOMI, 75, Izd-vo «Nauka», Leningrad. otd., L., 1978, 43–58 | MR | Zbl

[4] V. A. Koibaev, “Elementarnye seti v lineinykh gruppakh”, Tr. IMM UrO RAN, 17, no. 4, 2011, 134–141

[5] S. K. Kuklina, A. O. Likhacheva, Ya. N. Nuzhin, “O zamknutosti kovrov lieva tipa nad kommutativnymi koltsami”, Tr. IMM UrO RAN, 21, no. 3, 2015, 192–196 | MR

[6] V. A. Koibaev, Ya. N. Nuzhin, “Podgruppy grupp Shevalle i koltsa Li, opredelyaemye naborom additivnykh podgrupp osnovnogo koltsa”, Fundament. i prikl. matem., 18:1 (2013), 75–84 | MR | Zbl

[7] V. M. Levchuk, “O porozhdayuschikh mnozhestvakh kornevykh elementov grupp Shevalle nad polem”, Algebra i logika, 22:5 (1983), 504–517 | MR | Zbl

[8] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl

[9] R. W. Carter, Simple Groups of Lie Type, Pure Appl. Math., 28, John Wiley and Sons, London, 1972 | MR | Zbl

[10] N. A. Vavilov, “Vesovye elementy grupp Shevalle”, Algebra i analiz, 20:1 (2008), 34–85 | MR | Zbl

[11] Z. I. Borevich, “O podgruppakh lineinykh grupp, bogatykh transvektsiyami”, Koltsa i lineinye gruppy, Zap. nauchn. sem. LOMI, 75, Izd-vo «Nauka», Leningrad. otd., L., 1978, 22–31 | MR | Zbl