Inequalities for the Eigenvalues of the Riesz Potential
Matematičeskie zametki, Tome 102 (2017) no. 6, pp. 844-850.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, of all the domains with identical measure, it is the ball that maximizes the first eigenvalue of the Riesz potential. It is shown that the sum of the squares of all the eigenvalues is also maximized in the ball among all the domains with identical measure.
Keywords: eigenvalue, spectral geometry, Riesz potential.
@article{MZM_2017_102_6_a4,
     author = {T. Sh. Kal'menov and D. Suragan},
     title = {Inequalities for the {Eigenvalues} of the {Riesz} {Potential}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {844--850},
     publisher = {mathdoc},
     volume = {102},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a4/}
}
TY  - JOUR
AU  - T. Sh. Kal'menov
AU  - D. Suragan
TI  - Inequalities for the Eigenvalues of the Riesz Potential
JO  - Matematičeskie zametki
PY  - 2017
SP  - 844
EP  - 850
VL  - 102
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a4/
LA  - ru
ID  - MZM_2017_102_6_a4
ER  - 
%0 Journal Article
%A T. Sh. Kal'menov
%A D. Suragan
%T Inequalities for the Eigenvalues of the Riesz Potential
%J Matematičeskie zametki
%D 2017
%P 844-850
%V 102
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a4/
%G ru
%F MZM_2017_102_6_a4
T. Sh. Kal'menov; D. Suragan. Inequalities for the Eigenvalues of the Riesz Potential. Matematičeskie zametki, Tome 102 (2017) no. 6, pp. 844-850. http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a4/

[1] J. W. S. Rayleigh, The Theory of Sound, Dover Publ., New York, 1945 | MR | Zbl

[2] A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, Birkhäuser Verlag, Basel, 2006 | MR | Zbl

[3] M. V. Ruzhanskii, D. Suragan, “O normakh Shattena integralnykh operatorov tipa svertki”, UMN, 71:1 (427) (2016), 169–170 | DOI | MR | Zbl

[4] F. Riesz, “Sur une inégalité intégrale”, J. London Math. Soc., 5 (1930), 162–168 | DOI | Zbl

[5] A. Burchard, A Short Course on Rearrangement Inequalities, , 2009 http://www.math.toronto.edu/almut/rearrange.pdf

[6] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR | Zbl

[7] D. Daners, “A Faber–Krahn inequality for Robin problems in any space dimension”, Math. Ann., 335:4 (2006), 767–785 | DOI | MR | Zbl

[8] B. Dittmar, “Sums of reciprocal eigenvalues of the Laplacian”, Math. Nachr., 237 (2002), 45–61 | 3.0.CO;2-M class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[9] T. Sh. Kalmenov, D. Suragan, “K spektralnym voprosam ob'emnogo potentsiala”, Dokl. AN, 428 (2009), 16–19 | MR | Zbl