Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_102_6_a15, author = {D. V. Isangulova}, title = {A {Vector} {Field} {Potentiality} {Criterion} in {Sub-Riemannian} {Geometry}}, journal = {Matemati\v{c}eskie zametki}, pages = {949--954}, publisher = {mathdoc}, volume = {102}, number = {6}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a15/} }
D. V. Isangulova. A Vector Field Potentiality Criterion in Sub-Riemannian Geometry. Matematičeskie zametki, Tome 102 (2017) no. 6, pp. 949-954. http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a15/
[1] P. K. Rashevskii, Uch. zapiski ped. in-ta im. K. Libknekhta. Ser. fiz.-matem. nauk, 1938, no. 2, 83–94
[2] W.-L. Chow, Math. Ann., 117 (1939), 98–105 | MR | Zbl
[3] O. Calin, D.-C. Chang, Sub-Riemannian Geometry. General Theory and Examples, Encyclopedia Math. Appl., 126, Cambridge Univ. Press, Cambridge, 2009 | MR | Zbl
[4] O. Calin, D.-C. Chang, J. Hu, Anal. Math. Phys., 5:3 (2015), 217–231 | DOI | MR | Zbl
[5] O. Calin, D.-C. Chang, M. Eastwood, Bull. Inst. Math. Acad. Sin. (N.S.), 8:2 (2013), 159–168 | MR | Zbl
[6] O. Calin, D. C. Chang, M. Eastwood, Anal. Math. Phys., 4:1-2 (2014), 99–114 | DOI | MR | Zbl
[7] M. Gromov, Sub-Riemannian Geometry, Progr. Math., 144, Birkhäuser, Basel, 1996, 79–323 | MR | Zbl
[8] V. A. Zorich, Matematicheskii analiz, Ch. 2, Nauka, M, 1984 | MR | Zbl