A Vector Field Potentiality Criterion in Sub-Riemannian Geometry
Matematičeskie zametki, Tome 102 (2017) no. 6, pp. 949-954.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: sub-Riemannian manifold, potential vector field, subgradient.
Mots-clés : Carnot group
@article{MZM_2017_102_6_a15,
     author = {D. V. Isangulova},
     title = {A {Vector} {Field} {Potentiality} {Criterion} in {Sub-Riemannian} {Geometry}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {949--954},
     publisher = {mathdoc},
     volume = {102},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a15/}
}
TY  - JOUR
AU  - D. V. Isangulova
TI  - A Vector Field Potentiality Criterion in Sub-Riemannian Geometry
JO  - Matematičeskie zametki
PY  - 2017
SP  - 949
EP  - 954
VL  - 102
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a15/
LA  - ru
ID  - MZM_2017_102_6_a15
ER  - 
%0 Journal Article
%A D. V. Isangulova
%T A Vector Field Potentiality Criterion in Sub-Riemannian Geometry
%J Matematičeskie zametki
%D 2017
%P 949-954
%V 102
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a15/
%G ru
%F MZM_2017_102_6_a15
D. V. Isangulova. A Vector Field Potentiality Criterion in Sub-Riemannian Geometry. Matematičeskie zametki, Tome 102 (2017) no. 6, pp. 949-954. http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a15/

[1] P. K. Rashevskii, Uch. zapiski ped. in-ta im. K. Libknekhta. Ser. fiz.-matem. nauk, 1938, no. 2, 83–94

[2] W.-L. Chow, Math. Ann., 117 (1939), 98–105 | MR | Zbl

[3] O. Calin, D.-C. Chang, Sub-Riemannian Geometry. General Theory and Examples, Encyclopedia Math. Appl., 126, Cambridge Univ. Press, Cambridge, 2009 | MR | Zbl

[4] O. Calin, D.-C. Chang, J. Hu, Anal. Math. Phys., 5:3 (2015), 217–231 | DOI | MR | Zbl

[5] O. Calin, D.-C. Chang, M. Eastwood, Bull. Inst. Math. Acad. Sin. (N.S.), 8:2 (2013), 159–168 | MR | Zbl

[6] O. Calin, D. C. Chang, M. Eastwood, Anal. Math. Phys., 4:1-2 (2014), 99–114 | DOI | MR | Zbl

[7] M. Gromov, Sub-Riemannian Geometry, Progr. Math., 144, Birkhäuser, Basel, 1996, 79–323 | MR | Zbl

[8] V. A. Zorich, Matematicheskii analiz, Ch. 2, Nauka, M, 1984 | MR | Zbl