($L_p$--$L_q$)-Boundedness of Pseudodifferential Operators on the $n$-Dimensional Torus
Matematičeskie zametki, Tome 102 (2017) no. 6, pp. 938-942.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: pseudodifferential operator, $n$-dimensional torus, (rough) symbol, Hörmander's class of symbols, ($L_p$–$L_q$)-boundedness of operators.
@article{MZM_2017_102_6_a13,
     author = {D. B. Bazarkhanov},
     title = {($L_p$--$L_q${)-Boundedness} of {Pseudodifferential} {Operators} on the $n${-Dimensional} {Torus}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {938--942},
     publisher = {mathdoc},
     volume = {102},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a13/}
}
TY  - JOUR
AU  - D. B. Bazarkhanov
TI  - ($L_p$--$L_q$)-Boundedness of Pseudodifferential Operators on the $n$-Dimensional Torus
JO  - Matematičeskie zametki
PY  - 2017
SP  - 938
EP  - 942
VL  - 102
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a13/
LA  - ru
ID  - MZM_2017_102_6_a13
ER  - 
%0 Journal Article
%A D. B. Bazarkhanov
%T ($L_p$--$L_q$)-Boundedness of Pseudodifferential Operators on the $n$-Dimensional Torus
%J Matematičeskie zametki
%D 2017
%P 938-942
%V 102
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a13/
%G ru
%F MZM_2017_102_6_a13
D. B. Bazarkhanov. ($L_p$--$L_q$)-Boundedness of Pseudodifferential Operators on the $n$-Dimensional Torus. Matematičeskie zametki, Tome 102 (2017) no. 6, pp. 938-942. http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a13/

[1] L. Khërmander, Analiz lineinykh differentsialrykh operatorov s chastnymi proizvodnymi. T. 3. Psevdodifferentsialnye operatory, Mir, M., 1987 | MR

[2] H. Kumano-go, Pseudodifferential Operators, MIT Press, Cambridge, 1981 | MR | Zbl

[3] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[4] L. Hörmander, Singular Integrals, Amer. Math. Soc., Providence, RI, 1967, 138–183 | MR | Zbl

[5] L. Hörmander, Comm. Pure Appl. Math., 24 (1971), 529–535 | DOI | MR | Zbl

[6] A. P. Calderon, R. Vaillancourt, J. Math. Soc. Japan, 23:2 (1971), 374–378 | DOI | MR | Zbl

[7] H. O. Cordes, J. Funct. Anal., 18:2 (1975), 115–131 | DOI | MR | Zbl

[8] A. P. Calderon, R. Vaillancourt, Proc. Nat. Acad. Sci. U.S.A., 69 (1972), 1185–1187 | DOI | MR | Zbl

[9] C. H. Ching, J. Differential Equations, 11 (1972), 436–447 | DOI | MR | Zbl

[10] L. Rodino, Proc. Amer. Math. Soc., 58:1 (1976), 211–215 | MR | Zbl

[11] R. R. Coifman, Y. Meyer, Au dela des opérateurs pseudo-différentiels, Astérisque, 57, Soc. Math. France, Paris, 1978 | MR | Zbl

[12] J. Hounie, Comm. Partial Differential Equations, 11:7 (1986), 765–778 | DOI | MR | Zbl

[13] D. B. Bazarkhanov, Tr. IMM UrO RAN, 22, no. 4, 2016, 64–80 | DOI | MR

[14] C. Fefferman, Israel J. Math., 14 (1973), 413–417 | DOI | MR | Zbl

[15] J. Álvarez, J. Hounie, Ark. Mat., 28:1 (1990), 1–22 | DOI | MR | Zbl

[16] M. Ruzhansky, V. Turunen, J. Fourier Anal. Appl., 16:6 (2010), 943–982 | DOI | MR | Zbl

[17] J. Delgado, Operator Theory: Advances and Applications, 231 (2013), 103–116 | DOI | MR | Zbl

[18] D. Cardona, J. Pseudo-Differ. Oper. Appl., 5:4 (2014), 507–515 | DOI | MR | Zbl

[19] J. Delgado, M. Ruzhansky, J. Inst. Math. Jussieu, 2017, 1–29 | DOI

[20] D. Cardona, Monatsh. Math., 2017, 1–18 | DOI

[21] C. E. Kenig, W. Staubach, Studia Math., 183:3 (2007), 249–258 | DOI | MR | Zbl

[22] N. Michalowski, D. Rule, W. Staubach, J. Math. Anal. Appl., 414:1 (2014), 149–165 | DOI | MR | Zbl

[23] A. A. Arutyunov, Matem. zametki, 97:4 (2015), 493–502 | DOI | MR | Zbl