Basis Property of Eigen- and Associated Functions of an Operator with Nondense Domain of Definition in the Example of the Orr--Sommerfeld problem
Matematičeskie zametki, Tome 102 (2017) no. 6, pp. 931-937.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we propose a method for proving the unconditional basis property of eigen- and associated functions of an integro-differential operator defined on a nondense domain of definition. In particular, we obtain a new simpler proof of the unconditional basis property of eigen- and associated functions of the spectral Orr–Sommerfeld problem, well-known in hydromechanics, which reduces to the eigenvalue problem for the operator under study.
Keywords: Orr–Sommerfeld problem, pencils of differential operators, Riesz basis, unconditional basis
Mots-clés : Sobolev spaces.
@article{MZM_2017_102_6_a12,
     author = {E. A. Shiryaev},
     title = {Basis {Property} of {Eigen-} and {Associated} {Functions} of an {Operator} with {Nondense} {Domain} of {Definition} in the {Example} of the {Orr--Sommerfeld} problem},
     journal = {Matemati\v{c}eskie zametki},
     pages = {931--937},
     publisher = {mathdoc},
     volume = {102},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a12/}
}
TY  - JOUR
AU  - E. A. Shiryaev
TI  - Basis Property of Eigen- and Associated Functions of an Operator with Nondense Domain of Definition in the Example of the Orr--Sommerfeld problem
JO  - Matematičeskie zametki
PY  - 2017
SP  - 931
EP  - 937
VL  - 102
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a12/
LA  - ru
ID  - MZM_2017_102_6_a12
ER  - 
%0 Journal Article
%A E. A. Shiryaev
%T Basis Property of Eigen- and Associated Functions of an Operator with Nondense Domain of Definition in the Example of the Orr--Sommerfeld problem
%J Matematičeskie zametki
%D 2017
%P 931-937
%V 102
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a12/
%G ru
%F MZM_2017_102_6_a12
E. A. Shiryaev. Basis Property of Eigen- and Associated Functions of an Operator with Nondense Domain of Definition in the Example of the Orr--Sommerfeld problem. Matematičeskie zametki, Tome 102 (2017) no. 6, pp. 931-937. http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a12/

[1] R. C. Drazin, W. H. Reid, Hydrodynamic Stability, Cambridge Univ. Press, Cambridge, 1982 | MR | Zbl

[2] A. A. Shkalikov, C. Tretter, “Kamke problems. Properties of the eigenfunctions”, Math. Nachr., 170 (1994), 251–275 | DOI | MR | Zbl

[3] A. A. Shkalikov, C. Tretter, “Spectral analysis for linear pencils $N-\lambda P$ of ordinary differential operators”, Math. Nachr., 179 (1996), 275–305 | DOI | MR | Zbl

[4] N. Dunford, “A survey on the theory of spectral operators”, Bull. Amer. Math. Soc., 64:5 (1958), 217–274 | DOI | MR | Zbl

[5] V. P. Mikhailov, “O bazisakh Rissa v $\mathcal L_2[0,1]$”, Dokl. AN SSSR, 144:5 (1962), 981–984 | MR | Zbl

[6] G. M. Kesselman, “O bezuslovnoi skhodimosti razlozhenii po sobstvennym funktsiyam nekotorykh differentsialnykh operatorov”, Izv. vuzov. Matem., 1964, no. 2, 82–93 | MR | Zbl

[7] A. A. Shkalikov, “O bazisnosti sobstvennykh funktsii obyknovennogo differentsialnogo operatora”, UMN, 34:5 (209) (1979), 235–236 | MR | Zbl

[8] A. A. Shkalikov, “Kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii s parametrom v granichnykh usloviyakh”, Tr. sem. im. I.G. Petrovskogo, 9 (1983), 190–229 | MR | Zbl

[9] H. Langer, C. Tretter, “Spectral properties of the Orr-Sommerfeld problem”, Proc. Roy. Soc. Edinburgh Sect. A, 127:6 (1997), 1245–1261 | DOI | MR | Zbl

[10] A. A. Shkalikov, “Kak opredelit operator Orra–Zommerfelda?”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1998, no. 4, 36–43 | MR | Zbl

[11] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR | Zbl

[12] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl

[13] A. A. Shkalikov, “O bazisnosti sistemy sobstvennykh funktsii obyknovennogo differentsialnogo operatora s integralnymi kraevymi usloviyami”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1982, no. 6, 12–21 | MR | Zbl

[14] A. A. Shkalikov, “Vozmuscheniya samosopryazhennykh i normalnykh operatorov s diskretnym spektrom”, UMN, 71:5 (431) (2016), 113–174 | DOI | MR | Zbl