Generalized Method of Stationary Phase for the Fourier Transform of a Rapidly Oscillating Function
Matematičeskie zametki, Tome 102 (2017) no. 6, pp. 816-827.

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic formulas are obtained for a class of integrals that are Fourier transforms of rapidly oscillating functions. These formulas contain special functions and generalize the well-known method of stationary phase.
Keywords: asymptotics, rapidly oscillating function, method of stationary phase.
Mots-clés : Fourier transform
@article{MZM_2017_102_6_a1,
     author = {V. V. Grushin},
     title = {Generalized {Method} of {Stationary} {Phase} for the {Fourier} {Transform} of a {Rapidly} {Oscillating} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {816--827},
     publisher = {mathdoc},
     volume = {102},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a1/}
}
TY  - JOUR
AU  - V. V. Grushin
TI  - Generalized Method of Stationary Phase for the Fourier Transform of a Rapidly Oscillating Function
JO  - Matematičeskie zametki
PY  - 2017
SP  - 816
EP  - 827
VL  - 102
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a1/
LA  - ru
ID  - MZM_2017_102_6_a1
ER  - 
%0 Journal Article
%A V. V. Grushin
%T Generalized Method of Stationary Phase for the Fourier Transform of a Rapidly Oscillating Function
%J Matematičeskie zametki
%D 2017
%P 816-827
%V 102
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a1/
%G ru
%F MZM_2017_102_6_a1
V. V. Grushin. Generalized Method of Stationary Phase for the Fourier Transform of a Rapidly Oscillating Function. Matematičeskie zametki, Tome 102 (2017) no. 6, pp. 816-827. http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a1/

[1] M. V. Fedoryuk, Asimptotika: integraly i ryady, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1987 | MR | Zbl

[2] A. Erdeii, Asimptoticheskie razlozheniya, Fizmatgiz, M., 1962 | MR | Zbl

[3] S. Ya. Sekerzh-Zenkovich, B. I. Volkov, “Estimate for the errors of asymptotic solutions of the Cauchy–Poisson problem”, Russ. J. Math. Phys., 16:1 (2009), 121–129 | DOI | MR | Zbl

[4] S. Ya. Sekerzh-Zenkovich, “Simple solution of the Cauchy–Poisson problem for head waves”, Russ. J. Math. Phys., 16:2 (2009), 315–322 | DOI | MR | Zbl

[5] S. Ya. Sekerzh-Zenkovich, “Analytical study of a potential model of tsunami with simple source of piston type. 1. Exact solution”, Russ. J. Math. Phys., 19:3 (2012), 385–393 | DOI | MR | Zbl

[6] S. Ya. Sekerzh-Zenkovich, “Analytical study of a potential model of tsunami with simple source of piston type. 2. Asymptotic formula for the height of tsunami in the far field”, Russ. J. Math. Phys., 20:4 (2013), 542–546 | DOI | MR | Zbl

[7] M. V. Berry, “Tsunami asymptotics”, New J. Phys., 7 (2005), 129–146 | DOI