Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_102_6_a1, author = {V. V. Grushin}, title = {Generalized {Method} of {Stationary} {Phase} for the {Fourier} {Transform} of a {Rapidly} {Oscillating} {Function}}, journal = {Matemati\v{c}eskie zametki}, pages = {816--827}, publisher = {mathdoc}, volume = {102}, number = {6}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a1/} }
TY - JOUR AU - V. V. Grushin TI - Generalized Method of Stationary Phase for the Fourier Transform of a Rapidly Oscillating Function JO - Matematičeskie zametki PY - 2017 SP - 816 EP - 827 VL - 102 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a1/ LA - ru ID - MZM_2017_102_6_a1 ER -
V. V. Grushin. Generalized Method of Stationary Phase for the Fourier Transform of a Rapidly Oscillating Function. Matematičeskie zametki, Tome 102 (2017) no. 6, pp. 816-827. http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a1/
[1] M. V. Fedoryuk, Asimptotika: integraly i ryady, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1987 | MR | Zbl
[2] A. Erdeii, Asimptoticheskie razlozheniya, Fizmatgiz, M., 1962 | MR | Zbl
[3] S. Ya. Sekerzh-Zenkovich, B. I. Volkov, “Estimate for the errors of asymptotic solutions of the Cauchy–Poisson problem”, Russ. J. Math. Phys., 16:1 (2009), 121–129 | DOI | MR | Zbl
[4] S. Ya. Sekerzh-Zenkovich, “Simple solution of the Cauchy–Poisson problem for head waves”, Russ. J. Math. Phys., 16:2 (2009), 315–322 | DOI | MR | Zbl
[5] S. Ya. Sekerzh-Zenkovich, “Analytical study of a potential model of tsunami with simple source of piston type. 1. Exact solution”, Russ. J. Math. Phys., 19:3 (2012), 385–393 | DOI | MR | Zbl
[6] S. Ya. Sekerzh-Zenkovich, “Analytical study of a potential model of tsunami with simple source of piston type. 2. Asymptotic formula for the height of tsunami in the far field”, Russ. J. Math. Phys., 20:4 (2013), 542–546 | DOI | MR | Zbl
[7] M. V. Berry, “Tsunami asymptotics”, New J. Phys., 7 (2005), 129–146 | DOI