Compactness of the Commutators Generated by Lipschitz Functions and Fractional Integral Operators
Matematičeskie zametki, Tome 102 (2017) no. 5, pp. 749-760.

Voir la notice de l'article provenant de la source Math-Net.Ru

Compactness of the commutators generated by fractional integral operators and Lipschitz functions is characterized, while its boundedness has already been characterized by Shirai.
Keywords: compactness, commutators, Morrey spaces.
@article{MZM_2017_102_5_a8,
     author = {T. Nogayama and Y. Sawano},
     title = {Compactness of the {Commutators} {Generated} by {Lipschitz} {Functions} and {Fractional} {Integral} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {749--760},
     publisher = {mathdoc},
     volume = {102},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a8/}
}
TY  - JOUR
AU  - T. Nogayama
AU  - Y. Sawano
TI  - Compactness of the Commutators Generated by Lipschitz Functions and Fractional Integral Operators
JO  - Matematičeskie zametki
PY  - 2017
SP  - 749
EP  - 760
VL  - 102
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a8/
LA  - ru
ID  - MZM_2017_102_5_a8
ER  - 
%0 Journal Article
%A T. Nogayama
%A Y. Sawano
%T Compactness of the Commutators Generated by Lipschitz Functions and Fractional Integral Operators
%J Matematičeskie zametki
%D 2017
%P 749-760
%V 102
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a8/
%G ru
%F MZM_2017_102_5_a8
T. Nogayama; Y. Sawano. Compactness of the Commutators Generated by Lipschitz Functions and Fractional Integral Operators. Matematičeskie zametki, Tome 102 (2017) no. 5, pp. 749-760. http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a8/

[1] S. Sobolev, “Ob odnoi teoreme funktsionalnogo analiza”, Matem. sb., 4 (46):3 (1938), 471–497 | Zbl

[2] G. H. Hardy, J. Littlewood, “Some properties of fractional integrals. I”, Math. Z., 27:1 (1928), 565–606 | DOI | MR | Zbl

[3] G. H. Hardy, J. Littlewood, “Some properties of fractional integrals. II”, Math. Z., 34 (1932), 403–439 | DOI | MR | Zbl

[4] D. R. Adams, “A note on Riesz potentials”, Duke Math. J., 42:4 (1975), 765–778 | DOI | MR | Zbl

[5] L. I. Hedberg, “On certain convolution inequalities”, Proc. Amer. Math. Soc., 36 (1972), 505–510 | DOI | MR | Zbl

[6] S. Shirai, “Necessary and sufficient conditions for boundedness of commutators of fractional integral operators on classical Morrey spaces”, Hokkaido Math. J., 35:3 (2006), 683–696 | DOI | MR | Zbl

[7] L. Pick, A. Kufner, O. John, S. Fučik, Function Spaces, Vol. 1, De Gruyter Ser. Nonlinear Anal. Appl., 14, de Gruyter, Berlin, 2013 | MR | Zbl

[8] G. N. Meyers, “Mean oscillation over cubes and Hölder continuity”, Proc. Amer. Math. Soc., 15 (1964), 717–721 | MR | Zbl

[9] Y. Sawano, S. Shirai, “Compact commutators on Morrey spaces with non-doubling measures”, Georgian Math. J., 15:2 (2008), 353–376 | MR | Zbl