Weighted Inequalities for Hardy-Type Operators
Matematičeskie zametki, Tome 102 (2017) no. 5, pp. 673-683.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish criteria for the validity of modular inequalities for the Hardy operator on the cone $\Omega$ of nonnegative decreasing functions from weighted Orlicz spaces with general weight. The result is based on the theorem on the reduction of modular inequalities for positively homogeneous operators on the cone $\Omega$, which enables passing to modular inequalities for modified operators on the cone of all nonnegative functions from an Orlicz space. It is shown that, for the Hardy operator, the modified operator is a generalized Hardy operator. This enables us to establish explicit criteria for the validity of modular inequalities.
Keywords: Hardy operator, generalized Hardy operator, cone of decreasing functions, weighted Orlicz space, modular inequality.
@article{MZM_2017_102_5_a3,
     author = {E. G. Bakhtigareeva and M. L. Gol'dman},
     title = {Weighted {Inequalities} for {Hardy-Type} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {673--683},
     publisher = {mathdoc},
     volume = {102},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a3/}
}
TY  - JOUR
AU  - E. G. Bakhtigareeva
AU  - M. L. Gol'dman
TI  - Weighted Inequalities for Hardy-Type Operators
JO  - Matematičeskie zametki
PY  - 2017
SP  - 673
EP  - 683
VL  - 102
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a3/
LA  - ru
ID  - MZM_2017_102_5_a3
ER  - 
%0 Journal Article
%A E. G. Bakhtigareeva
%A M. L. Gol'dman
%T Weighted Inequalities for Hardy-Type Operators
%J Matematičeskie zametki
%D 2017
%P 673-683
%V 102
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a3/
%G ru
%F MZM_2017_102_5_a3
E. G. Bakhtigareeva; M. L. Gol'dman. Weighted Inequalities for Hardy-Type Operators. Matematičeskie zametki, Tome 102 (2017) no. 5, pp. 673-683. http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a3/

[1] M. L. Goldman, “Modulyarnye neravenstva i neravenstva dlya norm operatorov na konuse ubyvayuschikh funktsii iz prostranstva Orlicha”, Dokl. AN, 474:2 (2017), 147–150

[2] C. Bennett, R. Sharpley, Interpolation of Operators, Pure Appl. Math., 129, Acad. Press, Boston, MA, 1988 | MR | Zbl

[3] S. Bloom, R. Kerman, “Weighted integral inequalities for operators of Hardy type”, Studia Math., 110:1 (1994), 35–52 | MR | Zbl

[4] Jim Quile Sun, Hardy Type Inequalities on Weighted Orlicz Spaces, Ph.D. Thesis, The Univ. of Western Ontario, 1995 | MR

[5] Jim Quile Sun, “The modular inequalities for a class of convolution operators on monotone functions”, Proc. Amer. Math. Soc., 125:8 (1997), 2293–2305 | DOI | MR | Zbl

[6] E. Sawyer, “Boundedness of classical operators on classical Lorentz spaces”, Studia Math., 96:2 (1990), 145–158 | MR | Zbl

[7] H. P. Heinig, A. Kufner, “Hardy operators on monotone functions and sequences in Orlicz spaces”, J. London Math. Soc. (2), 53:2 (1996), 256–270 | DOI | MR | Zbl

[8] P. Drábek, H. P. Heinig, A. Kufner, “Weighted modular inequalities for monotone functions”, J. Inequal. Appl., 1:2 (1997), 183–197 | MR | Zbl

[9] M. Goldman, R. Kerman, “On the principal of duality in Orlicz–Lorentz spaces”, Function spaces. Differential Operators. Problems of Mathematical Education, Proc. Intern. Conf. Dedicated to the 75th Birthday of Prof. L. D. Kudrjavtsev, Vol. 1, Moscow, 1998, 179–183

[10] M. L. Goldman, “Otsenki dlya suzhenii monotonnykh operatorov na konus ubyvayuschikh funktsii v prostranstve Orlicha”, Matem. zametki, 100:1 (2016), 30–46 | DOI | MR | Zbl

[11] M. L. Goldman, “Otsenki norm monotonnykh operatorov na vesovykh klassakh Orlicha–Lorentsa”, Dokl. AN, 471:2 (2016), 131–135 | Zbl