Almost-Periodic Algebras and Their Automorphisms
Matematičeskie zametki, Tome 102 (2017) no. 5, pp. 657-672

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem concerning the form of the maximal ideal space of an almost-periodic algebra formed by functions on $\mathbb{R}^m$ is considered. It is shown that this space is homeomorphic to the topological group dual to the group of frequencies of the algebra under consideration. In the case of a quasiperiodic algebra, the mappings of $\mathbb{R}^n$ generating automorphisms of the algebra are described. Several specific examples are given and a relation to the theory of quasicrystals is indicated.
Keywords: maximal ideal space, almost-periodic algebra, dual group, automorphism, quasicrystal.
@article{MZM_2017_102_5_a2,
     author = {A. B. Antonevich and A. N. Buzulutskaya (Glaz)},
     title = {Almost-Periodic {Algebras} and {Their} {Automorphisms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {657--672},
     publisher = {mathdoc},
     volume = {102},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a2/}
}
TY  - JOUR
AU  - A. B. Antonevich
AU  - A. N. Buzulutskaya (Glaz)
TI  - Almost-Periodic Algebras and Their Automorphisms
JO  - Matematičeskie zametki
PY  - 2017
SP  - 657
EP  - 672
VL  - 102
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a2/
LA  - ru
ID  - MZM_2017_102_5_a2
ER  - 
%0 Journal Article
%A A. B. Antonevich
%A A. N. Buzulutskaya (Glaz)
%T Almost-Periodic Algebras and Their Automorphisms
%J Matematičeskie zametki
%D 2017
%P 657-672
%V 102
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a2/
%G ru
%F MZM_2017_102_5_a2
A. B. Antonevich; A. N. Buzulutskaya (Glaz). Almost-Periodic Algebras and Their Automorphisms. Matematičeskie zametki, Tome 102 (2017) no. 5, pp. 657-672. http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a2/