Characterizations for the Fractional Integral Operators
Matematičeskie zametki, Tome 102 (2017) no. 5, pp. 789-804

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the boundedness of the fractional integral operator $I_{\alpha}$ on Carnot group $\mathbb{G}$ in the generalized Morrey spaces $M_{p,\varphi}(\mathbb{G})$. We shall give a characterization for the strong and weak type boundedness of $I_{\alpha}$ on the generalized Morrey spaces, respectively. As applications of the properties of the fundamental solution of sub-Laplacian $\mathcal{L}$ on $\mathbb{G}$, we prove two Sobolev–Stein embedding theorems on generalized Morrey spaces in the Carnot group setting.
Mots-clés : Carnot group
Keywords: fractional integral operator, generalized Morrey space.
@article{MZM_2017_102_5_a11,
     author = {A. Eroglu and V. S. Guliev and J. V. Azizov},
     title = {Characterizations for the {Fractional} {Integral} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {789--804},
     publisher = {mathdoc},
     volume = {102},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a11/}
}
TY  - JOUR
AU  - A. Eroglu
AU  - V. S. Guliev
AU  - J. V. Azizov
TI  - Characterizations for the Fractional Integral Operators
JO  - Matematičeskie zametki
PY  - 2017
SP  - 789
EP  - 804
VL  - 102
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a11/
LA  - ru
ID  - MZM_2017_102_5_a11
ER  - 
%0 Journal Article
%A A. Eroglu
%A V. S. Guliev
%A J. V. Azizov
%T Characterizations for the Fractional Integral Operators
%J Matematičeskie zametki
%D 2017
%P 789-804
%V 102
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a11/
%G ru
%F MZM_2017_102_5_a11
A. Eroglu; V. S. Guliev; J. V. Azizov. Characterizations for the Fractional Integral Operators. Matematičeskie zametki, Tome 102 (2017) no. 5, pp. 789-804. http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a11/