Characterizations for the Fractional Integral Operators
Matematičeskie zametki, Tome 102 (2017) no. 5, pp. 789-804
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we study the boundedness of the fractional integral operator $I_{\alpha}$
on Carnot
group $\mathbb{G}$
in the generalized Morrey spaces
$M_{p,\varphi}(\mathbb{G})$.
We shall give a characterization for the
strong and weak type boundedness of $I_{\alpha}$
on the generalized Morrey spaces,
respectively.
As applications of the properties of the fundamental solution of
sub-Laplacian $\mathcal{L}$
on $\mathbb{G}$,
we prove two Sobolev–Stein embedding theorems on generalized Morrey
spaces in the Carnot
group setting.
Mots-clés :
Carnot group
Keywords: fractional integral operator, generalized Morrey space.
Keywords: fractional integral operator, generalized Morrey space.
@article{MZM_2017_102_5_a11,
author = {A. Eroglu and V. S. Guliev and J. V. Azizov},
title = {Characterizations for the {Fractional} {Integral} {Operators}},
journal = {Matemati\v{c}eskie zametki},
pages = {789--804},
publisher = {mathdoc},
volume = {102},
number = {5},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a11/}
}
TY - JOUR AU - A. Eroglu AU - V. S. Guliev AU - J. V. Azizov TI - Characterizations for the Fractional Integral Operators JO - Matematičeskie zametki PY - 2017 SP - 789 EP - 804 VL - 102 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a11/ LA - ru ID - MZM_2017_102_5_a11 ER -
A. Eroglu; V. S. Guliev; J. V. Azizov. Characterizations for the Fractional Integral Operators. Matematičeskie zametki, Tome 102 (2017) no. 5, pp. 789-804. http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a11/