Fej\'er and Hermite--Hadamard Type Inequalities
Matematičeskie zametki, Tome 102 (2017) no. 5, pp. 644-656.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some new extensions and refinements of Hermite–Hadamard and Fejér type inequalities for functions which are $N$-quasiconvex are derived and discussed.
Keywords: Fejér inequality, Hermite–Hadamard inequality, $\gamma$-quasiconvexity, convexity.
@article{MZM_2017_102_5_a1,
     author = {S. Abramovich and L.-E. Persson},
     title = {Fej\'er and {Hermite--Hadamard} {Type} {Inequalities}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {644--656},
     publisher = {mathdoc},
     volume = {102},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a1/}
}
TY  - JOUR
AU  - S. Abramovich
AU  - L.-E. Persson
TI  - Fej\'er and Hermite--Hadamard Type Inequalities
JO  - Matematičeskie zametki
PY  - 2017
SP  - 644
EP  - 656
VL  - 102
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a1/
LA  - ru
ID  - MZM_2017_102_5_a1
ER  - 
%0 Journal Article
%A S. Abramovich
%A L.-E. Persson
%T Fej\'er and Hermite--Hadamard Type Inequalities
%J Matematičeskie zametki
%D 2017
%P 644-656
%V 102
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a1/
%G ru
%F MZM_2017_102_5_a1
S. Abramovich; L.-E. Persson. Fej\'er and Hermite--Hadamard Type Inequalities. Matematičeskie zametki, Tome 102 (2017) no. 5, pp. 644-656. http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a1/

[1] S. S. Dragomir, J. Pečarić, L. E. Persson, “Some inequalities of Hadamard type”, Soochow J. Math., 21:3 (1995), 335–341 | MR | Zbl

[2] S. S. Dragomir, “$n$-points inequalities of Hermite–Hadamard type for $h$-convex functions on linear spaces”, Armen. J. Math., 8:1 (2016), 38–57 | MR | Zbl

[3] S. Varošanec, “On $h$-convexity”, J. Math. Anal Appl., 326:1 (2007), 303–311 | DOI | MR | Zbl

[4] C. P. Niculescu, L. E. Persson, “Old and new on the Hermite-Hadamard inequality”, Real Anal. Exchange, 29:2 (2004), 663–685 | DOI | MR | Zbl

[5] C. P. Niculescu, L. E. Persson, Convex Funcitons and Their Applications. A Contemporary Approach, CMS Books Math., 23, Springer, New York, 2006 | MR | Zbl

[6] S. Abramovich, “Hölder, Jensen, Minkowski, Jensen–Steffensen and Slater–Pečarić inequalities derived through $N$-quasiconvexity”, Math. Inequal. Appl., 19:4 (2016), 1203–1226 | MR | Zbl

[7] S. Abramovich, L. E. Persson, “Some new estimates of the 'Jensen gap'”, J. Inequal. Appl., 2016 (2016), 39 | DOI | MR | Zbl