Keywords: Hermite–Hadamard inequality, $\gamma$-quasiconvexity, convexity.
@article{MZM_2017_102_5_a1,
author = {S. Abramovich and L.-E. Persson},
title = {Fej\'er and {Hermite{\textendash}Hadamard} {Type} {Inequalities}},
journal = {Matemati\v{c}eskie zametki},
pages = {644--656},
year = {2017},
volume = {102},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a1/}
}
S. Abramovich; L.-E. Persson. Fejér and Hermite–Hadamard Type Inequalities. Matematičeskie zametki, Tome 102 (2017) no. 5, pp. 644-656. http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a1/
[1] S. S. Dragomir, J. Pečarić, L. E. Persson, “Some inequalities of Hadamard type”, Soochow J. Math., 21:3 (1995), 335–341 | MR | Zbl
[2] S. S. Dragomir, “$n$-points inequalities of Hermite–Hadamard type for $h$-convex functions on linear spaces”, Armen. J. Math., 8:1 (2016), 38–57 | MR | Zbl
[3] S. Varošanec, “On $h$-convexity”, J. Math. Anal Appl., 326:1 (2007), 303–311 | DOI | MR | Zbl
[4] C. P. Niculescu, L. E. Persson, “Old and new on the Hermite-Hadamard inequality”, Real Anal. Exchange, 29:2 (2004), 663–685 | DOI | MR | Zbl
[5] C. P. Niculescu, L. E. Persson, Convex Funcitons and Their Applications. A Contemporary Approach, CMS Books Math., 23, Springer, New York, 2006 | MR | Zbl
[6] S. Abramovich, “Hölder, Jensen, Minkowski, Jensen–Steffensen and Slater–Pečarić inequalities derived through $N$-quasiconvexity”, Math. Inequal. Appl., 19:4 (2016), 1203–1226 | MR | Zbl
[7] S. Abramovich, L. E. Persson, “Some new estimates of the 'Jensen gap'”, J. Inequal. Appl., 2016 (2016), 39 | DOI | MR | Zbl