On Optimal Harvesting of a Resource on a Circle
Matematičeskie zametki, Tome 102 (2017) no. 4, pp. 565-578
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper studies the optimality in the problem of cyclic harvesting of a resource distributed on a circle with a certain prescribed density. The velocity of motion of the collecting device and the fraction of the resource harvested at a given time play the role of control. The problem is to choose a control maximizing a given quality functional. The paper presents the maximum principle for this (infinite-dimensional) problem. The maximum principle can be written as two inequalities which can be conveniently verified. The class of problems with a concave profit function is solved completely. At the end of the paper, several examples are considered to illustrate the developed technique.
Keywords:
cyclic harvesting of a resource, maximum principle, spatially distributed resource, necessary conditions for optimality.
@article{MZM_2017_102_4_a8,
author = {M. I. Zelikin and L. V. Lokoutsievskiy and S. V. Skopintcev},
title = {On {Optimal} {Harvesting} of a {Resource} on a {Circle}},
journal = {Matemati\v{c}eskie zametki},
pages = {565--578},
publisher = {mathdoc},
volume = {102},
number = {4},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a8/}
}
TY - JOUR AU - M. I. Zelikin AU - L. V. Lokoutsievskiy AU - S. V. Skopintcev TI - On Optimal Harvesting of a Resource on a Circle JO - Matematičeskie zametki PY - 2017 SP - 565 EP - 578 VL - 102 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a8/ LA - ru ID - MZM_2017_102_4_a8 ER -
M. I. Zelikin; L. V. Lokoutsievskiy; S. V. Skopintcev. On Optimal Harvesting of a Resource on a Circle. Matematičeskie zametki, Tome 102 (2017) no. 4, pp. 565-578. http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a8/