Lower Bound for the Chromatic Number of a Rational Space with Metric $l_u$ and with One Forbidden Distance
Matematičeskie zametki, Tome 102 (2017) no. 4, pp. 532-548 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New lower bounds for the chromatic number of the rational space in the Minkowski metric for certain irrational values of the forbidden distance are obtained.
Keywords: chromatic number of the rational space, graph, forbidden distance, Minkowski metric.
@article{MZM_2017_102_4_a5,
     author = {Yu. A. Demidovich},
     title = {Lower {Bound} for the {Chromatic} {Number} of a {Rational} {Space} with {Metric~}$l_u$ and with {One} {Forbidden} {Distance}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {532--548},
     year = {2017},
     volume = {102},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a5/}
}
TY  - JOUR
AU  - Yu. A. Demidovich
TI  - Lower Bound for the Chromatic Number of a Rational Space with Metric $l_u$ and with One Forbidden Distance
JO  - Matematičeskie zametki
PY  - 2017
SP  - 532
EP  - 548
VL  - 102
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a5/
LA  - ru
ID  - MZM_2017_102_4_a5
ER  - 
%0 Journal Article
%A Yu. A. Demidovich
%T Lower Bound for the Chromatic Number of a Rational Space with Metric $l_u$ and with One Forbidden Distance
%J Matematičeskie zametki
%D 2017
%P 532-548
%V 102
%N 4
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a5/
%G ru
%F MZM_2017_102_4_a5
Yu. A. Demidovich. Lower Bound for the Chromatic Number of a Rational Space with Metric $l_u$ and with One Forbidden Distance. Matematičeskie zametki, Tome 102 (2017) no. 4, pp. 532-548. http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a5/

[1] A. M. Raigorodskii, “O khromaticheskom chisle prostranstva”, UMN, 55:2 (332) (2000), 147–148 | DOI | MR | Zbl

[2] D. G. Larman, C. A. Rogers, “The realization of distances within sets in Euclidean space”, Mathematika, 19 (1972), 1–24 | DOI | MR | Zbl

[3] M. Benda, M. Perles, “Colorings of metric spaces”, Geombinatorics, 9:3 (2000), 113–126 | MR | Zbl

[4] E. I. Ponomarenko, A. M. Raigorodskii, “Novaya nizhnyaya otsenka khromaticheskogo chisla ratsionalnogo prostranstva s odnim i dvumya zapreschennymi rasstoyaniyami”, Matem. zametki, 97:2 (2015), 255–261 | DOI | MR | Zbl

[5] E. I. Ponomarenko, A. M. Raigorodskii, “Novaya nizhnyaya otsenka khromaticheskogo chisla ratsionalnogo prostranstva”, UMN, 68:5 (413) (2013), 183–184 | DOI | MR | Zbl

[6] A. M. Raigorodskii, “Problema Borsuka i khromaticheskie chisla nekotorykh metricheskikh prostranstv”, UMN, 56:1 (337) (2001), 107–146 | DOI | MR | Zbl

[7] L. A. Székely, “Erdős on unit distances and the Szemerédi–Trotter theorems”, Paul Erdős and His Mathematics, II, Bolyai Soc. Math. Stud., 11, János Bolyai Math. Soc., Springer, Budapest, 2002, 649–666 | MR | Zbl

[8] A. M. Raigorodskii, “Coloring distance graphs and graphs of diameters”, Thirty Essays on Geometric Graph Theory, Springer, New York, 2013, 429–460 | MR | Zbl

[9] A. M. Raigorodskii, Lineino-algebraicheskii metod v kombinatorike, MTsNMO, M., 2007

[10] P. Brass, W. Moser, J. Pach, Research Problems in Discrete Geometry, Springer, New York, 2005 | MR | Zbl

[11] A. Soifer, The Mathematical Coloring Book, Springer, New York, 2009 | MR | Zbl

[12] A. M. Raigorodskii, “O khromaticheskom chisle prostranstva s metrikoi $l_q$”, UMN, 59:5 (359) (2004), 161–162 | DOI | MR | Zbl