A Note on Regularity Criteria in Terms of Pressure for the 3D Viscous MHD Equations
Matematičeskie zametki, Tome 102 (2017) no. 4, pp. 526-531.

Voir la notice de l'article provenant de la source Math-Net.Ru

This note is devoted to the study of the smoothness of weak solutions to the Cauchy problem for three-dimensional magneto-hydrodynamic system in terms of the pressure. It is proved that if the pressure $\pi$ belongs to $L^2(0,T,\dot B_{\infty,\infty}^{-1}(\mathbb R^3))$ or the gradient field of pressure $\nabla\pi$ belongs to $L^{2/3}(0,T,\mathrm{BMO}(\mathbb R^3))$, then the corresponding weak solution $(u,b)$ remains smooth on $[0,T]$.
Keywords: MHD equations, regularity criteria, critical Besov space.
@article{MZM_2017_102_4_a4,
     author = {S. Gala and M. A. Ragusa},
     title = {A {Note} on {Regularity} {Criteria} in {Terms} of {Pressure} for the {3D} {Viscous} {MHD} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {526--531},
     publisher = {mathdoc},
     volume = {102},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a4/}
}
TY  - JOUR
AU  - S. Gala
AU  - M. A. Ragusa
TI  - A Note on Regularity Criteria in Terms of Pressure for the 3D Viscous MHD Equations
JO  - Matematičeskie zametki
PY  - 2017
SP  - 526
EP  - 531
VL  - 102
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a4/
LA  - ru
ID  - MZM_2017_102_4_a4
ER  - 
%0 Journal Article
%A S. Gala
%A M. A. Ragusa
%T A Note on Regularity Criteria in Terms of Pressure for the 3D Viscous MHD Equations
%J Matematičeskie zametki
%D 2017
%P 526-531
%V 102
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a4/
%G ru
%F MZM_2017_102_4_a4
S. Gala; M. A. Ragusa. A Note on Regularity Criteria in Terms of Pressure for the 3D Viscous MHD Equations. Matematičeskie zametki, Tome 102 (2017) no. 4, pp. 526-531. http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a4/

[1] M. Sermange, R. Temam, “Some mathematical questions related to the MHD equations”, Comm. Pure Appl. Math., 36:5 (1983), 635–664 | DOI | MR | Zbl

[2] R. E. Caflish, I. Klapper, G. Steel, “Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD”, Comm. Math. Phys., 184:2 (1997), 443–455 | DOI | MR | Zbl

[3] Q. Chen, C. Miao, Z. Zhang, “On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations”, Comm. Math. Phys., 284:3 (2008), 919–930 | DOI | MR | Zbl

[4] C. Cao, J. Wu, “Two regularity criteria for the 3D MHD equations”, J. Differential Equations, 248:9 (2010), 2263–2274 | DOI | MR | Zbl

[5] Z. Lei, Y. Zhou, “BKM's criterion and global weak solutions for magnetohydrodynamics with zero viscosity”, Discrete Contin. Dyn. Syst., 25:2 (2009), 575–583 | DOI | MR | Zbl

[6] Y. Zhou, S. Gala, “Regularity criteria in terms of the pressure for the Navier–Stokes equations in the critical Morrey–Campanato space”, Z. Anal. Anwend., 30 (2011), 83–93 | DOI | MR | Zbl

[7] H. Duan, “On regularity criteria in terms of pressure for the 3D viscous MHD equations”, Appl. Anal., 91:5 (2012), 947–952 | DOI | MR | Zbl

[8] J. Fan, T. Ozawa, “Regularity criterion for weak solutions to the Navier–Stokes equations in terms of the gradient of the pressure”, J. Inequal. Appl., 2008, 412678 | DOI | MR | Zbl

[9] X. Zhang, Y. Jia, B.-Q. Dong, “On the pressure regularity criterion of the 3D Navier–Stokes equations”, J. Math. Anal. Appl., 393:2 (2012), 413–420 | DOI | MR | Zbl

[10] H. Triebel, Theory of Function Spaces, Birkhäuser Verlag, Basel, 1983 | MR | Zbl

[11] Y. Zhou, “On regularity criteria in terms of pressure for the Navier–Stokes equations in $\mathbb R^3$”, Proc. Amer. Math. Soc., 134:1 (2006), 149–156 | DOI | MR | Zbl

[12] P. G. Lemarié-Rieusset, “The Navier–Stokes equations in the critical Morrey-Campanato space”, Rev. Mat. Iberoam., 23:3 (2007), 897–930 | DOI | MR | Zbl

[13] P. Gerard, Y. Meyer, F. Oru, “Inégalités de Sobolev précisées”, Séminaire sur les équations aux dérivées partielles, Exp. No. IV, École Polytech., Palaiseau, 1997 | MR | Zbl

[14] H. Kozono, Y. Taniuchi, “Bilinear estimates in BMO and the Navier–Stokes equations”, Math. Z., 235:1 (2000), 173–194 | DOI | MR | Zbl

[15] S. Gala, “Extension criterion on regularity for weak solutions to the 3D MHD equations”, Math. Methods Appl. Sci., 33:12 (2010), 1496–1503 | MR | Zbl

[16] C. He, Y. Wang, “Remark on the regularity for weak solutions to the magnetohydrodynamic equations”, Math. Methods Appl. Sci., 31:14 (2008), 1667–1684 | DOI | MR | Zbl