Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_102_4_a2, author = {A. V. Borisov and E. V. Vetchanin and A. A. Kilin}, title = {Control of the {Motion} of a {Triaxial} {Ellipsoid} in a {Fluid} {Using} {Rotors}}, journal = {Matemati\v{c}eskie zametki}, pages = {503--513}, publisher = {mathdoc}, volume = {102}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a2/} }
TY - JOUR AU - A. V. Borisov AU - E. V. Vetchanin AU - A. A. Kilin TI - Control of the Motion of a Triaxial Ellipsoid in a Fluid Using Rotors JO - Matematičeskie zametki PY - 2017 SP - 503 EP - 513 VL - 102 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a2/ LA - ru ID - MZM_2017_102_4_a2 ER -
A. V. Borisov; E. V. Vetchanin; A. A. Kilin. Control of the Motion of a Triaxial Ellipsoid in a Fluid Using Rotors. Matematičeskie zametki, Tome 102 (2017) no. 4, pp. 503-513. http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a2/
[1] V. V. Kozlov, S. M. Ramodanov, “O dvizhenii izmenyaemogo tela v idealnoi zhidkosti”, PMM, 65:4 (2001), 592–601 | Zbl
[2] V. V. Kozlov, S. M. Ramodanov, “O dvizhenii v idealnoi zhidkosti tela s zhestkoi obolochkoi i menyayuscheisya geometriei mass”, DAN, 382:4 (2002), 478–481
[3] D. A. Onischenko, V. V. Kozlov, “O dvizhenii v idealnoi zhidkosti tela, soderzhaschego vnutri sebya podvizhnuyu sosredotochennuyu massu”, PMM, 67:4 (2003), 620–633 | MR | Zbl
[4] G. Kirchhoff, Vorlesungen über Mathematische Physik: Mechanik, B.G. Teubner, Leipzig, 1877 | Zbl
[5] A. A. Kilin, E. V. Vetchanin, “Upravlenie dvizheniem tverdogo tela v zhidkosti s pomoschyu dvukh podvizhnykh mass”, Nelineinaya dinam., 11:4 (2015), 633–645
[6] E. V. Vetchanin, A. A. Kilin, “Svobodnoe i upravlyaemoe dvizhenie v zhidkosti tela s podvizhnoi vnutrennei massoi pri nalichii tsirkulyatsii vokrug tela”, Dokl. AN, 466:3 (2016), 293–297 | MR
[7] E. V. Vetchanin, A. A. Kilin, “Control of body motion in an ideal fluid using the internal mass and the rotor in the presence of circulation around the body”, J. Dyn. Control Syst., 23:2 (2017), 435–458 | MR
[8] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “How to control Chaplygin's sphere using rotors”, Regul. Chaotic Dyn., 17:3-4 (2012), 258–272 | DOI | MR | Zbl
[9] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “How to control the Chaplygin ball using rotors. II”, Regul. Chaotic Dyn., 18:1-2 (2013), 144–158 | DOI | MR | Zbl
[10] T. B. Ivanova, E. N. Pivovarova, “Comments on the paper by A. V. Borisov, A. A. Kilin, I. S. Mamaev “How to control the Chaplygin ball Using rotors. II””, Regul. Chaotic Dyn., 19:1 (2014), 140–143 | DOI | MR | Zbl
[11] A. Morinaga, M. Svinin, M. Yamamoto, “On the iterative steering of a rolling robot actuated by internal rotors”, Analysis, Modelling, Optimization, and Numerical Techniques, Springer Proc. Math. Stat., 121, Springer, Cham, 2015, 205–218 | DOI | MR | Zbl
[12] P. K. Rashevskii, “O soedinimosti lyubykh dvukh tochek vpolne negolonomnogo prostranstva dopustimoi liniei”, Uchen. zap. Ped. in-ta im. Libknekhta. Ser. fiz.-matem., 3:2 (1938), 83–94
[13] A. M. Lyapunov, “O postoyannykh vintovykh dvizheniyakh tverdogo tela v zhidkosti”, Soobsch. Kharkovskogo matem. ob-va. Ser. 2, 1:1-2 (1888), 7–60
[14] P. Holmes, J. Jenkins, N. E. Leonard, “Dynamics of the Kirchhoff equations. I. Coincident centers of gravity and buoyancy”, Phys. D, 118:3-4 (1998), 311–342 | DOI | MR | Zbl
[15] J. L. G. Guirao, J. A. Vera, “Equilibria, stability and Hamiltonian Hopf bifurcation of a gyrostat in an incompressible ideal fluid”, Phys. D, 241:19 (2012), 1648–1654 | DOI | MR | Zbl
[16] C. A. Woolsey, N. E. Leonard, “Stabilizing underwater vehicle motion using internal rotors”, Automatica J. IFAC, 38:12 (2002), 2053–2062 | DOI | MR | Zbl
[17] J. Biggs, W. Holderbaum, “Optimal kinematic control of an autonomous underwater vehicle”, IEEE Trans. Automat. Control, 54:7 (2009), 1623–1626 | DOI | MR
[18] A. V. Borisov, I. S. Mamaev, Dinamika tverdogo tela. Gamiltonovy metody, integriruemost, khaos, IKI, M.–Izhevsk, 2005 | MR | Zbl