Root Class Residuality of HNN-Extensions with Central Cyclic Associated Subgroups
Matematičeskie zametki, Tome 102 (2017) no. 4, pp. 597-612.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{R}$ be a root class of groups which is closed with respect to passage to quotient groups and contains at least one nonidentity group. A criterion for the $\mathcal{R}$-residuality of an HNN-extension whose associated subgroups are cyclic and belong to the center of the base group is obtained.
Keywords: root class residuality, residual solvability, residual $p$-finiteness, HNN-extension.
@article{MZM_2017_102_4_a11,
     author = {E. V. Sokolov and E. A. Tumanova},
     title = {Root {Class} {Residuality} of {HNN-Extensions} with {Central} {Cyclic} {Associated} {Subgroups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {597--612},
     publisher = {mathdoc},
     volume = {102},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a11/}
}
TY  - JOUR
AU  - E. V. Sokolov
AU  - E. A. Tumanova
TI  - Root Class Residuality of HNN-Extensions with Central Cyclic Associated Subgroups
JO  - Matematičeskie zametki
PY  - 2017
SP  - 597
EP  - 612
VL  - 102
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a11/
LA  - ru
ID  - MZM_2017_102_4_a11
ER  - 
%0 Journal Article
%A E. V. Sokolov
%A E. A. Tumanova
%T Root Class Residuality of HNN-Extensions with Central Cyclic Associated Subgroups
%J Matematičeskie zametki
%D 2017
%P 597-612
%V 102
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a11/
%G ru
%F MZM_2017_102_4_a11
E. V. Sokolov; E. A. Tumanova. Root Class Residuality of HNN-Extensions with Central Cyclic Associated Subgroups. Matematičeskie zametki, Tome 102 (2017) no. 4, pp. 597-612. http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a11/

[1] K. W. Gruenberg, “Residual properties of infinite soluble groups”, Proc. London Math. Soc. (3), 7 (1957), 29–62 | DOI | MR | Zbl

[2] E. V. Sokolov, “A characterization of root classes of groups”, Comm. Algebra, 43:2 (2015), 856–860 | DOI | MR | Zbl

[3] D. N. Azarov, D. Tedzho, “Ob approksimiruemosti svobodnogo proizvedeniya grupp s ob'edinennoi podgruppoi kornevym klassom grupp”, Nauch. tr. Ivan. gos. un-ta. Matematika, 2002, no. 5, 6–10; D. N. Azarov, D. Tieudjo, On Root-Class Residuality of Generalized Free Products, 2004, arXiv: math/0408277

[4] D. N. Azarov, E. A. Tumanova, “Ob approksimiruemosti obobschennykh svobodnykh proizvedenii grupp kornevymi klassami”, Nauch. tr. Ivan. gos. un-ta. Matematika, 2008, no. 6, 29–42

[5] E. A. Tumanova, “Ob approksimiruemosti obobschennykh svobodnykh proizvedenii kornevymi klassami grupp”, Model. i analiz inform. sistem, 20:1 (2013), 133–137

[6] E. A. Tumanova, “Ob approksimiruemosti kornevymi klassami grupp obobschennykh svobodnykh proizvedenii s normalnym ob'edineniem”, Izv. vuzov. Matem., 2015, no. 10, 27–44 | MR | Zbl

[7] E. V. Sokolov, E. A. Tumanova, “Dostatochnye usloviya approksimiruemosti nekotorykh obobschennykh svobodnykh proizvedenii kornevymi klassami grupp”, Sib. matem. zhurn., 57:1 (2016), 171–185 | DOI | MR | Zbl

[8] D. Tieudjo, “On root-class residuality of some free constructions”, JP J. Algebra Number Theory Appl., 18:2 (2010), 125–143 | MR | Zbl

[9] E. A. Tumanova, “Ob approksimiruemosti kornevymi klassami HNN-rasshirenii grupp”, Model. i analiz inform. sistem, 21:4 (2014), 148–180

[10] D. V. Goltsov, “Approksimiruemost HNN-rasshireniya s tsentralnymi svyazannymi podgruppami kornevym klassom grupp”, Matem. zametki, 97:5 (2015), 665–669 | DOI | MR | Zbl

[11] G. Rosenberger, S. L. Sasse, “Residual properties of HNN-extensions with cyclic associated subgroups”, Algebra Colloq., 3:1 (1996), 91–96 | MR | Zbl

[12] G. Kim, C. Y. Tang, “Cyclic subgroup separability of HNN-extensions with cyclic associated subgroups”, Canad. Math. Bull., 42:3 (1999), 335–343 | DOI | MR | Zbl

[13] K. B. Wong, P. C. Wong, “Residual finiteness, subgroup separability and conjugacy separability of certain HNN extensions”, Math. Slovaca, 62:5 (2012), 875–884 | DOI | MR | Zbl

[14] E. A. Tumanova, “Ob approksimiruemosti kornevymi klassami grupp Baumslaga–Solitera”, Sib. matem. zhurn., 58:3 (2017), 700–709

[15] E. V. Sokolov, “Ob otdelimosti podgrupp nilpotentnykh grupp v klasse konechnykh $\pi$-grupp”, Sib. matem. zhurn., 55:6 (2014), 1381–1390 | MR | Zbl

[16] A. I. Maltsev, “O gomomorfizmakh na konechnye gruppy”, Uchen. zap. Ivan. gos. ped. in-ta, 18 (1958), 49–60

[17] R. Lindon, P. Shupp, Kombinatornaya teoriya grupp, Mir, M., 1980 | MR | Zbl

[18] E. A. Tumanova, Approksimiruemost kornevymi klassami svobodnykh konstruktsii grupp, Dis. $\dots$ kand. fiz.-matem. nauk, Ivanovo, 2014

[19] E. V. Sokolov, Otdelimost podgrupp nekotorymi klassami konechnykh grupp, LAP Lambert Academic Publishing, Saarbrücken, 2012

[20] A. Karras, D. Solitar, “Subgroups of HNN groups and groups with one defining relation”, Canad. J. Math., 23 (1971), 627–643 | DOI | MR | Zbl

[21] F. Kholl, “Nilpotentnye gruppy”, Matematika. Sb. perevodov, 12:1 (1968), 3–36