On the Compactness of Convolution-Type Operators in Morrey Spaces
Matematičeskie zametki, Tome 102 (2017) no. 4, pp. 483-489.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a Morrey space, the product of the convolution operator with summable kernel and the operator of multiplication by an essentially bounded function is considered. Sufficient conditions for such a product to be compact are obtained. In addition, it is shown that the commutator of the convolution operator and the operator of multiplication by a function of weakly oscillating type is compact in a Morrey space.
Keywords: convolution operator, multiplication operator, Morrey space, commutator, compactness.
@article{MZM_2017_102_4_a0,
     author = {O. G. Avsyankin},
     title = {On the {Compactness} of {Convolution-Type} {Operators} in {Morrey} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--489},
     publisher = {mathdoc},
     volume = {102},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a0/}
}
TY  - JOUR
AU  - O. G. Avsyankin
TI  - On the Compactness of Convolution-Type Operators in Morrey Spaces
JO  - Matematičeskie zametki
PY  - 2017
SP  - 483
EP  - 489
VL  - 102
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a0/
LA  - ru
ID  - MZM_2017_102_4_a0
ER  - 
%0 Journal Article
%A O. G. Avsyankin
%T On the Compactness of Convolution-Type Operators in Morrey Spaces
%J Matematičeskie zametki
%D 2017
%P 483-489
%V 102
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a0/
%G ru
%F MZM_2017_102_4_a0
O. G. Avsyankin. On the Compactness of Convolution-Type Operators in Morrey Spaces. Matematičeskie zametki, Tome 102 (2017) no. 4, pp. 483-489. http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a0/

[1] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. I”, Eurasian Math. J., 3:3 (2012), 11–32 | MR | Zbl

[2] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. II”, Eurasian Math. J., 4:1 (2013), 21–45 | MR | Zbl

[3] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43:1 (1938), 126–166 | DOI | MR | Zbl

[4] E. Nakai, “Hardy–Littlewood maximal operator, singular integral operators and Riesz potentials on generalized Morrey spaces”, Math. Nachr., 166 (1994), 95–103 | DOI | MR | Zbl

[5] V. I. Burenkov, V. S. Guliev, Kh. V. Guliev, “Neobkhodimye i dostatochnye usloviya ogranichennosti drobnogo maksimalnogo operatora v lokalnykh prostranstvakh tipa Morri”, Dokl. AN, 409:4 (2006), 443–447 | MR | Zbl

[6] V. I. Burenkov, V. S. Guliev, Kh. V. Guliev, “Neobkhodimye i dostatochnye usloviya ogranichennosti potentsiala Rissa v lokalnykh prostranstvakh tipa Morri”, Dokl. AN, 412:5 (2007), 585–589 | MR | Zbl

[7] V. I. Burenkov, V. S. Guliev, T. V. Tararykova, A. Sherbetchi, “Neobkhodimye i dostatochnye usloviya ogranichennosti istinnykh singulyarnykh integralov v lokalnykh prostranstvakh tipa Morri”, Dokl. AN, 422:1 (2008), 11–14 | MR | Zbl

[8] V. I. Burenkov, T. V. Tararykova, “Analog neravenstva Yunga dlya svertok funktsii dlya obschikh prostranstv tipa Morri”, Funktsionalnye prostranstva, teoriya priblizhenii, smezhnye razdely matematicheskogo analiza, Tr. MIAN, 293, MAIK, M., 2016, 113–132 | DOI | MR

[9] Y. Sawano, S. Sharai, “Compact commutators on Morrey spaces with non-doubling measures”, Georgian Math. J., 15:2 (2008), 353–376 | MR | Zbl

[10] Y. Chen, Y. Ding, X. Wang, “Compactness of commutators of Riesz potential on Morrey spaces”, Potential Anal., 30:4 (2009), 301–313 | DOI | MR | Zbl

[11] Y. Chen, Y. Ding, X. Wang, “Compactness of commutators for singular integrals on Morrey spaces”, Canad. J. Math., 64:2 (2012), 257–281 | DOI | MR | Zbl

[12] N. K. Karapetyants, “Ob odnom analoge teoremy Khermandera dlya oblastei, otlichnykh ot $\mathbb{R}^n$”, Dokl. AN SSSR, 293:6 (1987), 1294–1297 | MR | Zbl

[13] N. Karapetiants, S. Samko, Equations with Involutive Operators, Birkhäuser Boston, Boston, MA, 2001 | MR | Zbl

[14] H. O. Cordes, “On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators”, J. Funct. Anal., 18:2 (1975), 115–131 | DOI | MR | Zbl