On the Nonextendable Solution and Blow-Up of the Solution of the One-Dimensional Equation of Ion-Sound Waves in a Plasma
Matematičeskie zametki, Tome 102 (2017) no. 3, pp. 383-395.

Voir la notice de l'article provenant de la source Math-Net.Ru

The initial boundary-value problem for the equation of ion-sound waves in a plasma is studied. A theorem on the nonextendable solution is proved. Sufficient conditions for the blow-up of the solution in finite time and the upper bound for the blow-up time are obtained using the method of test functions.
Keywords: blow-up of the solution, nonlinear initial boundary-value problem, exponential nonlinearity.
Mots-clés : Sobolev-type equation
@article{MZM_2017_102_3_a4,
     author = {M. O. Korpusov and A. A. Panin},
     title = {On the {Nonextendable} {Solution} and {Blow-Up} of the {Solution} of the {One-Dimensional} {Equation} of {Ion-Sound} {Waves} in a {Plasma}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {383--395},
     publisher = {mathdoc},
     volume = {102},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a4/}
}
TY  - JOUR
AU  - M. O. Korpusov
AU  - A. A. Panin
TI  - On the Nonextendable Solution and Blow-Up of the Solution of the One-Dimensional Equation of Ion-Sound Waves in a Plasma
JO  - Matematičeskie zametki
PY  - 2017
SP  - 383
EP  - 395
VL  - 102
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a4/
LA  - ru
ID  - MZM_2017_102_3_a4
ER  - 
%0 Journal Article
%A M. O. Korpusov
%A A. A. Panin
%T On the Nonextendable Solution and Blow-Up of the Solution of the One-Dimensional Equation of Ion-Sound Waves in a Plasma
%J Matematičeskie zametki
%D 2017
%P 383-395
%V 102
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a4/
%G ru
%F MZM_2017_102_3_a4
M. O. Korpusov; A. A. Panin. On the Nonextendable Solution and Blow-Up of the Solution of the One-Dimensional Equation of Ion-Sound Waves in a Plasma. Matematičeskie zametki, Tome 102 (2017) no. 3, pp. 383-395. http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a4/

[1] S. A. Gabov, Novye zadachi matematicheskoi teorii voln, Nauka, M., 1998 | Zbl

[2] F. Kako, N. Yajima, “Interaction of ion-acoustic solitons in two-dimensional space”, J. Phys. Soc. Japan, 49:5 (1980), 2063–2071 | DOI | MR | Zbl

[3] E. Infeld, Dzh. Roulands, Nelineinye volny, solitony i khaos, Fizmatlit, M., 2006 | MR | Zbl

[4] E. Mitidieri, S. I. Pokhozhaev, “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, Nauka, M., 2001, 3–383 | MR | Zbl

[5] H. A. Levine, “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+\mathcal{F}(u)$”, Arch. Rational Mech. Anal., 51:5 (1973), 371–386 | DOI | MR | Zbl

[6] H. A. Levine, “Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt}=-Au+\mathcal{F}(u)$”, Trans. Amer. Math. Soc., 192 (1974), 1–21 | MR | Zbl

[7] V. K. Kalantarov, O. A. Ladyzhenskaya, “O vozniknovenii kollapsov dlya kvazilineinykh uravnenii parabolicheskogo i giperbolicheskogo tipov”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 10, Zap. nauchn. sem. LOMI, 69, Izd-vo «Nauka», Leningrad. otd., L., 1977, 77–102 | MR | Zbl

[8] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007 | Zbl

[9] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Rezhimy s obostreniem dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR

[10] V. A. Galaktionov, S. I. Pokhozhaev, “Uravneniya nelineinoi dispersii tretego poryadka: udarnye volny, volny razrezheniya i razrusheniya”, Zh. vychisl. matem. i matem. fiz., 48:10 (2008), 1819–1846 | MR | Zbl

[11] M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, E. V. Yushkov, “Blow-up for one Sobolev problem: theoretical approach and numerical analysis”, J. Math. Anal. Appl., 442:2 (2016), 451–468 | DOI | MR | Zbl

[12] M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, E. V. Yushkov, “Blow-up phenomena in the model of a space charge stratification in semiconductors: analytical and numerical analysis”, Math. Methods Appl. Sci., 40:7 (2017), 2336–2346 | DOI | Zbl

[13] D. Gilbarg, N. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[14] R. A. Adams, J. J. F. Fournier, Sobolev Spaces, Pure Appl. Math. (Amst.), 140, Elsevier/Academic Press, Amsterdam, 2003 | MR | Zbl

[15] A. Kartan, Differentsialnoe ischislenie. Differentsialnye formy, Mir, M., 1971 | MR | Zbl

[16] A. A. Panin, “O lokalnoi razreshimosti i razrushenii resheniya abstraktnogo nelineinogo integralnogo uravneniya Volterra”, Matem. zametki, 97:6 (2015), 884–903 | DOI | MR | Zbl

[17] Kh. Gaevskii, K. Greger, K. Zakharias, Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR | Zbl