On the Positive Definiteness of Some Functions Related to the Schoenberg Problem
Matematičeskie zametki, Tome 102 (2017) no. 3, pp. 355-368
Voir la notice de l'article provenant de la source Math-Net.Ru
For a broad class of functions $f\colon[0,+\infty)\to\mathbb{R}$, we prove that the function $f(\rho^{\lambda}(x))$ is positive definite on a nontrivial real linear space $E$ if and only if $0\le\lambda\le \alpha(E,\rho)$. Here $\rho$ is a nonnegative homogeneous function on $E$ such that $\rho(x)\not\equiv 0$ and $\alpha(E,\rho)$ is the Schoenberg constant.
Keywords:
positive definite function, completely monotone function, Schoenberg problem, Kuttner–Golubov problem, Bochner theorem.
Mots-clés : Fourier transform
Mots-clés : Fourier transform
@article{MZM_2017_102_3_a2,
author = {V. P. Zastavnyi and A. D. Manov},
title = {On the {Positive} {Definiteness} of {Some} {Functions} {Related} to the {Schoenberg} {Problem}},
journal = {Matemati\v{c}eskie zametki},
pages = {355--368},
publisher = {mathdoc},
volume = {102},
number = {3},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a2/}
}
TY - JOUR AU - V. P. Zastavnyi AU - A. D. Manov TI - On the Positive Definiteness of Some Functions Related to the Schoenberg Problem JO - Matematičeskie zametki PY - 2017 SP - 355 EP - 368 VL - 102 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a2/ LA - ru ID - MZM_2017_102_3_a2 ER -
V. P. Zastavnyi; A. D. Manov. On the Positive Definiteness of Some Functions Related to the Schoenberg Problem. Matematičeskie zametki, Tome 102 (2017) no. 3, pp. 355-368. http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a2/