Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_102_3_a2, author = {V. P. Zastavnyi and A. D. Manov}, title = {On the {Positive} {Definiteness} of {Some} {Functions} {Related} to the {Schoenberg} {Problem}}, journal = {Matemati\v{c}eskie zametki}, pages = {355--368}, publisher = {mathdoc}, volume = {102}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a2/} }
TY - JOUR AU - V. P. Zastavnyi AU - A. D. Manov TI - On the Positive Definiteness of Some Functions Related to the Schoenberg Problem JO - Matematičeskie zametki PY - 2017 SP - 355 EP - 368 VL - 102 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a2/ LA - ru ID - MZM_2017_102_3_a2 ER -
V. P. Zastavnyi; A. D. Manov. On the Positive Definiteness of Some Functions Related to the Schoenberg Problem. Matematičeskie zametki, Tome 102 (2017) no. 3, pp. 355-368. http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a2/
[1] I. J. Schoenberg, “Metric spaces and positive definite functions”, Trans. Amer. Math. Soc., 44:2 (1938), 522–536 | DOI | MR | Zbl
[2] V. P. Zastavnyi, “On positive definiteness of some functions”, J. Multivariate Anal., 73:1 (2000), 55–81 | DOI | MR | Zbl
[3] A. L. Koldobskii, “Zadacha Shenberga o polozhitelno opredelennykh funktsiyakh”, Algebra i analiz, 3:3 (1991), 78–85 | MR | Zbl
[4] V. P. Zastavnyi, Polozhitelno opredelennye funktsii, zavisyaschie ot normy. Reshenie problemy Shenberga, Preprint, IPMM NAN Ukrainy, Donetsk, 1991
[5] V. P. Zastavnyi, “Polozhitelno opredelennye funktsii, zavisyaschie ot normy”, Dokl. RAN, 325:5 (1992), 901–903 | MR | Zbl
[6] V. P. Zastavnyi, “Positive definite functions depending on the norm”, Russ. J. Math. Phys., 1:4 (1993), 511–522 | MR | Zbl
[7] J. K. Misiewicz, “Positive definite functions on $l_{\infty}$”, Statist. Probab. Lett., 8:3 (1989), 255–260 | DOI | MR | Zbl
[8] Y. Kuritsyn, “Multidimensional versions and two problems of Schoenberg”, Problems of Stability of Stochastic Model, VNIISI, Moscow, 1989, 72–79
[9] C. S. Herz, “A class of negative-definite functions”, Proc. Amer. Math. Soc., 14:4 (1963), 670–676 | DOI | MR | Zbl
[10] A. Koldobsky, “Positive definite functions and stable random vectors”, Israel J. Math., 185 (2011), 277–292 | DOI | MR | Zbl
[11] J. Bretagnolle, D. Dacunha-Castelle, J.-L. Krivine, “Lois Stables et espaces $L_p$”, Ann. Inst. H. Poincaré Sect. B (N.S.), 2 (1966), 231–259 | MR | Zbl
[12] A. Koldobsky, “Positive definite functions, stable measures and isometries on Banach spaces”, Interaction Between Functional Analysis, Harmonic Analysis, and Probability, Lecture Notes in Pure and Appl. Math., 175, Dekker, New York, 1996, 275–290 | MR | Zbl
[13] A. Koldobsky, Y. Lonke, “A short proof of Schoenberg's conjecture on positive definite functions”, Bull. London Math. Soc., 31:6 (1999), 693–699 | DOI | MR | Zbl
[14] A. Koldobsky, Fourier Analysis in Convex Geometry, Math. Surveys Monogr., 116, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl
[15] L. R. Williams, J. H. Wells, Embedding and Extensions in Analysis, Springer-Verlag, Heidelberg, 1975 | MR | Zbl
[16] B. Kuttner, “On the Riesz means of a Fourier series. II”, J. London Math. Soc., 19 (1944), 77–84 | DOI | MR | Zbl
[17] B. I. Golubov, “On Abel-Poisson type and Riesz means”, Anal. Math., 7:3 (1981), 161–184 | DOI | MR | Zbl
[18] Yu. V. Linnik, “Lineinye formy i statisticheskie kriterii. I”, Ukr. matem. zhurn., 5:2 (1953), 207–243 | MR | Zbl
[19] D. N. Anderson, “A multivariate Linnik distributions”, Statist. Probab. Lett., 14:4 (1992), 333–336 | DOI | MR | Zbl
[20] I. V. Ostrovskii, “Analytic and asymptotic properties of multivariate Linnik's distribution”, Matem. fiz., anal., geom., 2:3 (1995), 436–455 | MR | Zbl
[21] L. Devroye, “A note on Linnik's distribution”, Statist. Probab. Lett., 9:4 (1990), 305–306 | DOI | MR | Zbl
[22] T. Gneiting, M. Schlather, “Stochastic models that separate fractal dimension and the Hurst effect”, SIAM Rev., 46:2 (2004), 269–282 | DOI | MR | Zbl
[23] R. Bhatia, T. Jain, “On some positive definite function”, Positivity, 19:4 (2015), 903–910 | DOI | MR | Zbl
[24] M. L. Eaton, “On the projections of isotropic distributions”, Ann. Statist., 9:2 (1981), 391–400 | DOI | MR | Zbl
[25] J. Misiewicz, “Substable and pseudo-isotropic processes – connections with the geometry of subspaces of $L_{\alpha}$-spaces”, Dissertationes Math. (Rozprawy Mat.), 358 (1996), 91 pp. | MR | Zbl
[26] A. D. Lisitskii, “Problema Itona i multiplikativnye svoistva mnogomernykh raspredelenii”, Teoriya veroyatn. i ee primen., 42:4 (1997), 696–714 | DOI | MR | Zbl
[27] C. Berg, J. Mateu, E. Porcu, “The Dagum family of isotropic correlation functions”, Bernoulli, 14:4 (2008), 1134–1149 | DOI | MR | Zbl
[28] N. I. Akhiezer, Lektsii ob integralnykh preobrazovaniyakh, Vischa shkola, Kharkov, 1984 | MR
[29] N. N. Vakhaniya, V. I. Tarieladze, S. A. Chobanyan, Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | MR | Zbl
[30] R. M. Trigub, E. S. Belinsky, Fourier Analysis and Approximation of Functions, Kluwer Acad. Publ., Boston, 2004 | MR | Zbl
[31] E. Khyuitt, K. Ross, Abstraktnyi garmonicheskii analiz. T. 2. Struktura i analiz kompaktnykh grupp. Analiz na lokalno kompaktnykh abelevykh gruppakh, Mir, M., 1975 | MR | Zbl
[32] Z. Sasvari, Multivariate Characteristic and Correlation Functions, Walter de Gruyter, Berlin, 2013 | MR | Zbl
[33] E. A. Gorin, “Polozhitelno opredelennye funktsii kak instrument matematicheskogo analiza”, Fundament. i prikl. matem., 17:7 (2012), 67–95
[34] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl
[35] B. A. Fuks, Vvedenie v teoriyu analiticheskikh funktsii mnogikh kompleksnykh peremennykh, Fizmatlit, M., 1962 | MR
[36] R. Narasimkhan, Analiz na deistvitelnykh i kompleksnykh mnogoobraziyakh, Mir, M., 1971 | Zbl
[37] S. S. Kutateladze, Osnovy funktsionalnogo analiza, Izd-vo In-ta matem. im. S. L. Soboleva SO RAN, Novosibirsk, 2001 | MR | Zbl
[38] D. V. Widder, The Laplace Transform, Princeton Univ. Press, Princeton, NJ, 1946 | MR
[39] N. I. Akhiezer, Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatgiz, M., 1961 | MR | Zbl
[40] R. L. Schilling, R. Song, Z. Vondraček, Bernstein Functions. Theory and Applications, Walter de Gruyter, Berlin, 2010 | MR | Zbl
[41] B. Kuttner, “On positive Riesz and Abel typical means”, Proc. London Math. Soc. (2), 49 (1947), 328–352 | MR | Zbl
[42] C. Berg, “Stieltjes-Pick-Bernstein-Schoenberg and their connection to complete monotonicity”, Positive Definite Functions. From Schoenberg to Space-Time Challenges, University Jaume I, Castellon, 2008, 15–45