On the Positive Definiteness of Some Functions Related to the Schoenberg Problem
Matematičeskie zametki, Tome 102 (2017) no. 3, pp. 355-368

Voir la notice de l'article provenant de la source Math-Net.Ru

For a broad class of functions $f\colon[0,+\infty)\to\mathbb{R}$, we prove that the function $f(\rho^{\lambda}(x))$ is positive definite on a nontrivial real linear space $E$ if and only if $0\le\lambda\le \alpha(E,\rho)$. Here $\rho$ is a nonnegative homogeneous function on $E$ such that $\rho(x)\not\equiv 0$ and $\alpha(E,\rho)$ is the Schoenberg constant.
Keywords: positive definite function, completely monotone function, Schoenberg problem, Kuttner–Golubov problem, Bochner theorem.
Mots-clés : Fourier transform
@article{MZM_2017_102_3_a2,
     author = {V. P. Zastavnyi and A. D. Manov},
     title = {On the {Positive} {Definiteness} of {Some} {Functions} {Related} to the {Schoenberg} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {355--368},
     publisher = {mathdoc},
     volume = {102},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a2/}
}
TY  - JOUR
AU  - V. P. Zastavnyi
AU  - A. D. Manov
TI  - On the Positive Definiteness of Some Functions Related to the Schoenberg Problem
JO  - Matematičeskie zametki
PY  - 2017
SP  - 355
EP  - 368
VL  - 102
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a2/
LA  - ru
ID  - MZM_2017_102_3_a2
ER  - 
%0 Journal Article
%A V. P. Zastavnyi
%A A. D. Manov
%T On the Positive Definiteness of Some Functions Related to the Schoenberg Problem
%J Matematičeskie zametki
%D 2017
%P 355-368
%V 102
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a2/
%G ru
%F MZM_2017_102_3_a2
V. P. Zastavnyi; A. D. Manov. On the Positive Definiteness of Some Functions Related to the Schoenberg Problem. Matematičeskie zametki, Tome 102 (2017) no. 3, pp. 355-368. http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a2/