A Nonstandard Cauchy Problem for the Heat Equation
Matematičeskie zametki, Tome 102 (2017) no. 2, pp. 270-283.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Cauchy problem for the heat equation in a cylinder $\mathcal{C}_T = \mathcal{X} \times (0,T)$ over a domain $\mathcal{X}$ in $\mathbb{R}^n$, with data on a strip lying on the lateral surface. The strip is of the form $S \times (0,T)$, where $S$ is an open subset of the boundary of $\mathcal{X}$. The problem is ill-posed. Under natural restrictions on the configuration of $S$, we derive an explicit formula for solutions of this problem.
Keywords: heat equation, Cauchy problem
Mots-clés : Carleman formulas.
@article{MZM_2017_102_2_a8,
     author = {K. O. Makhmudov and O. I. Makhmudov and N. N. Tarkhanov},
     title = {A {Nonstandard} {Cauchy} {Problem} for the {Heat} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {270--283},
     publisher = {mathdoc},
     volume = {102},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a8/}
}
TY  - JOUR
AU  - K. O. Makhmudov
AU  - O. I. Makhmudov
AU  - N. N. Tarkhanov
TI  - A Nonstandard Cauchy Problem for the Heat Equation
JO  - Matematičeskie zametki
PY  - 2017
SP  - 270
EP  - 283
VL  - 102
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a8/
LA  - ru
ID  - MZM_2017_102_2_a8
ER  - 
%0 Journal Article
%A K. O. Makhmudov
%A O. I. Makhmudov
%A N. N. Tarkhanov
%T A Nonstandard Cauchy Problem for the Heat Equation
%J Matematičeskie zametki
%D 2017
%P 270-283
%V 102
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a8/
%G ru
%F MZM_2017_102_2_a8
K. O. Makhmudov; O. I. Makhmudov; N. N. Tarkhanov. A Nonstandard Cauchy Problem for the Heat Equation. Matematičeskie zametki, Tome 102 (2017) no. 2, pp. 270-283. http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a8/

[1] L. A. Aizenberg, N. N. Tarkhanov, “Uslovno ustoichivye zadachi i formuly Karlemana”, Sib. matem. zhurn., 31:6 (1990), 9–15 | MR | Zbl

[2] N. N. Tarkhanov, The Cauchy Problem for Solutions of Elliptic Equations, Math. Top., 7, Akademie Verlag, Berlin, 1995 | MR | Zbl

[3] M. M. Lavrentev, V. G. Romanov, S. P. Shishatskii, Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980 | MR | Zbl

[4] M. Ikehata, “Two analytical formulae of the temperature inside a body by using partial lateral and initial data”, Inverse Problems, 25:3 (2009), 035011 | MR | Zbl

[5] R. E. Puzyrev, A. A. Shlapunov, “On an ill-posed problem for the heat equation”, Zhurn. SFU. Ser. Matem. i fiz., 5:3 (2012), 337–348

[6] M. S. Agranovich, M. I. Vishik, “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (117) (1964), 53–161 | MR | Zbl

[7] S. Bochner, Vorlesungen über Fouriersche Integrale, Akademie Verlag, Leipzig, 1932 | Zbl

[8] I. M. Gelfand, G. E. Shilov, “Preobrazovaniya Fure bystro rastuschikh funktsii i voprosy edinstvennosti resheniya zadachi Koshi”, UMN, 8:6 (58) (1953), 3–54 | MR | Zbl

[9] Sh. Yarmukhamedov, “Zadacha Koshi dlya uravnenie Laplasa”, Dokl. AN SSSR, 235:2 (1977), 281–283 | MR | Zbl

[10] M. Ikehata, “Inverse conductivity problem in the infinite slab”, Inverse Problems, 17:3 (2001), 437–454 | DOI | MR | Zbl

[11] Sh. Yarmukhamedov, “Funktsiya Karlemana i zadacha Koshi dlya uravneniya Laplasa”, Sib. matem. zhurn., 45:3 (2004), 702–719 | MR | Zbl

[12] Sh. Yarmukhamedov, I. Yarmukhamedov, “The Cauchy problem for the Helmholtz equation”, Ill-Posed and Non-Classical Problems of Mathematical Physics and Analysis, VSP, Utrecht, 2003, 143–172 | MR | Zbl

[13] O. Makmudov, I. Niyozov, N. Tarkhanov, “The Cauchy problem of couple-stress elasticity”, Complex Analysis and Dynamical Systems III, Contemp. Math., 455, Amer. Math. Soc., Providence, RI, 2008, 297–310 | DOI | MR | Zbl

[14] K. O. Makhmudov, O. I. Makhmudov, N. Tarkhanov, “Equations of Maxwell type”, J. Math. Anal. Appl., 378:1 (2011), 64–75 | DOI | MR | Zbl

[15] E. M. Landis, O. A. Oleinik, “Obobschennaya analitichnost i nekotorye svyazannye s nei svoistva reshenii ellipticheskikh i parabolicheskikh uravnenii”, UMN, 29:2 (176) (1974), 190–206 | MR | Zbl