Periodic Solutions of Nonlinear Equations Generalizing Logistic Equations with Delay
Matematičeskie zametki, Tome 102 (2017) no. 2, pp. 216-230.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of periodic solutions of nonlinear equations generalizing logistic equations with delay is studied. The existence of sets of periodic solutions of two types is established. The stability and asymptotics of periodic solutions under changes of the parameters are studied.
Mots-clés : bifurcation, singular perturbations
Keywords: stability, dynamics.
@article{MZM_2017_102_2_a4,
     author = {S. A. Kashchenko},
     title = {Periodic {Solutions} of {Nonlinear} {Equations} {Generalizing} {Logistic} {Equations} with {Delay}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {216--230},
     publisher = {mathdoc},
     volume = {102},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a4/}
}
TY  - JOUR
AU  - S. A. Kashchenko
TI  - Periodic Solutions of Nonlinear Equations Generalizing Logistic Equations with Delay
JO  - Matematičeskie zametki
PY  - 2017
SP  - 216
EP  - 230
VL  - 102
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a4/
LA  - ru
ID  - MZM_2017_102_2_a4
ER  - 
%0 Journal Article
%A S. A. Kashchenko
%T Periodic Solutions of Nonlinear Equations Generalizing Logistic Equations with Delay
%J Matematičeskie zametki
%D 2017
%P 216-230
%V 102
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a4/
%G ru
%F MZM_2017_102_2_a4
S. A. Kashchenko. Periodic Solutions of Nonlinear Equations Generalizing Logistic Equations with Delay. Matematičeskie zametki, Tome 102 (2017) no. 2, pp. 216-230. http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a4/

[1] J. Wu, Theory and Applications of Partial Functional Differential Equations, Appl. Math. Sci., 119, Springer-Verlag, New York, 1996 | MR | Zbl

[2] S. A. Gurli, Dzh. V.-Kh. Sou, Dzh. Kh. Vu, “Nelokalnye uravneniya reaktsii-diffuzii s zapazdyvaniem: biologicheskie modeli i nelineinaya dinamika”, Trudy mezhdunarodnoi konferentsii po differentsialnym i funktsionalno-differentsialnym uravneniyam – satellita Mezhdunarodnogo kongressa matematikov ICM-2002 (Moskva, MAI, 11–17 avgusta, 2002), Chast 1, SMFN, 1, MAI, M., 2003, 84–120 | MR | Zbl

[3] J. M. Cushing, Integrodifferential Equations and Delay Models in Population Dynamics, Lecture Notes in Biomathematics, 20, Springer-Verlag, Berlin, 1977 | MR | Zbl

[4] S. Kakutani, L. Markus, “On the non-linear difference-differential equation $y'(t)=[A-By(t-\tau)]y(t)$”, Contributions to the Theory of Nonlinear Oscillations, Vol. IV, Ann. of Math. Stud., 41, Princeton Univ. Press, Princeton, NJ, 1958, 1–18 | MR | Zbl

[5] G. S. Jones, “The existence of periodic solutions of $f'(x)=-\alpha f(x-1) [1+f(x)]$”, J. Math. Anal. Appl., 5 (1962), 435–450 | DOI | MR | Zbl

[6] S. A. Kaschenko, “O periodicheskikh resheniyakh uravneniya $x'(t)=-lx(t-1)[1+x(t)]$”, Issledovaniya po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1978, 110–117

[7] S. A. Kaschenko, “Asimptotika periodicheskogo resheniya obobschennogo uravneniya Khatchinsona”, Issledovaniya po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1981, 22

[8] Dzh. Kheil, Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR | Zbl

[9] F. Khartman, Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[10] A. D. Bryuno, Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979 | MR | Zbl

[11] S. A. Kashchenko, “Asymptotics of the solutions of the generalized Hutchinson equation”, Aut. Control Comp. Sci., 47:7 (2013), 470–494 | DOI

[12] R. Edvards, Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969 | MR | Zbl

[13] S. A. Kaschenko, “Issledovanie metodami bolshogo parametra sistemy nelineinykh differentsialno-raznostnykh uravnenii, modeliruyuschikh zadachu khischnik-zhertva”, Dokl. AN SSSR, 266:4 (1982), 792–795 | MR | Zbl