Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_102_2_a4, author = {S. A. Kashchenko}, title = {Periodic {Solutions} of {Nonlinear} {Equations} {Generalizing} {Logistic} {Equations} with {Delay}}, journal = {Matemati\v{c}eskie zametki}, pages = {216--230}, publisher = {mathdoc}, volume = {102}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a4/} }
S. A. Kashchenko. Periodic Solutions of Nonlinear Equations Generalizing Logistic Equations with Delay. Matematičeskie zametki, Tome 102 (2017) no. 2, pp. 216-230. http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a4/
[1] J. Wu, Theory and Applications of Partial Functional Differential Equations, Appl. Math. Sci., 119, Springer-Verlag, New York, 1996 | MR | Zbl
[2] S. A. Gurli, Dzh. V.-Kh. Sou, Dzh. Kh. Vu, “Nelokalnye uravneniya reaktsii-diffuzii s zapazdyvaniem: biologicheskie modeli i nelineinaya dinamika”, Trudy mezhdunarodnoi konferentsii po differentsialnym i funktsionalno-differentsialnym uravneniyam – satellita Mezhdunarodnogo kongressa matematikov ICM-2002 (Moskva, MAI, 11–17 avgusta, 2002), Chast 1, SMFN, 1, MAI, M., 2003, 84–120 | MR | Zbl
[3] J. M. Cushing, Integrodifferential Equations and Delay Models in Population Dynamics, Lecture Notes in Biomathematics, 20, Springer-Verlag, Berlin, 1977 | MR | Zbl
[4] S. Kakutani, L. Markus, “On the non-linear difference-differential equation $y'(t)=[A-By(t-\tau)]y(t)$”, Contributions to the Theory of Nonlinear Oscillations, Vol. IV, Ann. of Math. Stud., 41, Princeton Univ. Press, Princeton, NJ, 1958, 1–18 | MR | Zbl
[5] G. S. Jones, “The existence of periodic solutions of $f'(x)=-\alpha f(x-1) [1+f(x)]$”, J. Math. Anal. Appl., 5 (1962), 435–450 | DOI | MR | Zbl
[6] S. A. Kaschenko, “O periodicheskikh resheniyakh uravneniya $x'(t)=-lx(t-1)[1+x(t)]$”, Issledovaniya po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1978, 110–117
[7] S. A. Kaschenko, “Asimptotika periodicheskogo resheniya obobschennogo uravneniya Khatchinsona”, Issledovaniya po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1981, 22
[8] Dzh. Kheil, Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR | Zbl
[9] F. Khartman, Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl
[10] A. D. Bryuno, Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979 | MR | Zbl
[11] S. A. Kashchenko, “Asymptotics of the solutions of the generalized Hutchinson equation”, Aut. Control Comp. Sci., 47:7 (2013), 470–494 | DOI
[12] R. Edvards, Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969 | MR | Zbl
[13] S. A. Kaschenko, “Issledovanie metodami bolshogo parametra sistemy nelineinykh differentsialno-raznostnykh uravnenii, modeliruyuschikh zadachu khischnik-zhertva”, Dokl. AN SSSR, 266:4 (1982), 792–795 | MR | Zbl