$\lambda$-Convergence of Multiple Walsh--Paley Series and Sets of Uniqueness
Matematičeskie zametki, Tome 102 (2017) no. 2, pp. 292-301

Voir la notice de l'article provenant de la source Math-Net.Ru

$\lambda$-convergent multiple Walsh–Paley series on a multidimensional dyadic group are studied. It is proved that, for all $\lambda>1$, any arbitrary finite union of hyperplanes parallel to coordinate hyperplanes is a set of uniqueness for such series.
Keywords: Walsh system, multiple Walsh series, set of uniqueness, quasi-measure.
Mots-clés : dyadic group, $\lambda$-convergence
@article{MZM_2017_102_2_a10,
     author = {M. G. Plotnikov},
     title = {$\lambda${-Convergence} of {Multiple} {Walsh--Paley} {Series} and {Sets} of {Uniqueness}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {292--301},
     publisher = {mathdoc},
     volume = {102},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a10/}
}
TY  - JOUR
AU  - M. G. Plotnikov
TI  - $\lambda$-Convergence of Multiple Walsh--Paley Series and Sets of Uniqueness
JO  - Matematičeskie zametki
PY  - 2017
SP  - 292
EP  - 301
VL  - 102
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a10/
LA  - ru
ID  - MZM_2017_102_2_a10
ER  - 
%0 Journal Article
%A M. G. Plotnikov
%T $\lambda$-Convergence of Multiple Walsh--Paley Series and Sets of Uniqueness
%J Matematičeskie zametki
%D 2017
%P 292-301
%V 102
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a10/
%G ru
%F MZM_2017_102_2_a10
M. G. Plotnikov. $\lambda$-Convergence of Multiple Walsh--Paley Series and Sets of Uniqueness. Matematičeskie zametki, Tome 102 (2017) no. 2, pp. 292-301. http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a10/