$\lambda$-Convergence of Multiple Walsh--Paley Series and Sets of Uniqueness
Matematičeskie zametki, Tome 102 (2017) no. 2, pp. 292-301.

Voir la notice de l'article provenant de la source Math-Net.Ru

$\lambda$-convergent multiple Walsh–Paley series on a multidimensional dyadic group are studied. It is proved that, for all $\lambda>1$, any arbitrary finite union of hyperplanes parallel to coordinate hyperplanes is a set of uniqueness for such series.
Keywords: Walsh system, multiple Walsh series, set of uniqueness, quasi-measure.
Mots-clés : dyadic group, $\lambda$-convergence
@article{MZM_2017_102_2_a10,
     author = {M. G. Plotnikov},
     title = {$\lambda${-Convergence} of {Multiple} {Walsh--Paley} {Series} and {Sets} of {Uniqueness}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {292--301},
     publisher = {mathdoc},
     volume = {102},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a10/}
}
TY  - JOUR
AU  - M. G. Plotnikov
TI  - $\lambda$-Convergence of Multiple Walsh--Paley Series and Sets of Uniqueness
JO  - Matematičeskie zametki
PY  - 2017
SP  - 292
EP  - 301
VL  - 102
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a10/
LA  - ru
ID  - MZM_2017_102_2_a10
ER  - 
%0 Journal Article
%A M. G. Plotnikov
%T $\lambda$-Convergence of Multiple Walsh--Paley Series and Sets of Uniqueness
%J Matematičeskie zametki
%D 2017
%P 292-301
%V 102
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a10/
%G ru
%F MZM_2017_102_2_a10
M. G. Plotnikov. $\lambda$-Convergence of Multiple Walsh--Paley Series and Sets of Uniqueness. Matematičeskie zametki, Tome 102 (2017) no. 2, pp. 292-301. http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a10/

[1] V. A. Skvortsov, “O koeffitsientakh skhodyaschikhsya kratnykh ryadov Khaara i Uolsha”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1973, no. 6, 77–79 | MR | Zbl

[2] Kh. O. Movsisyan, “O edinstvennosti dvoinykh ryadov po sistemam Khaara i Uolsha”, Izv. AN Arm. SSR. Ser. matem., 9:1 (1974), 40–61 | Zbl

[3] S. F. Lukomskii, “O nekotorykh klassakh mnozhestv edinstvennosti kratnykh ryadov Uolsha”, Matem. sb., 180:7 (1989), 937–945 | MR | Zbl

[4] N. N. Kholschevnikova, “Ob'edinenie mnozhestv edinstvennosti kratnykh ryadov – Uolsha i trigonometricheskikh”, Matem. sb., 193:4 (2002), 135–160 | DOI | MR | Zbl

[5] L. D. Gogoladze, “K voprosu vosstanovleniya koeffitsientov skhodyaschikhsya kratnykh funktsionalnykh ryadov”, Izv. RAN. Ser. matem., 72:2 (2008), 83–90 | DOI | MR | Zbl

[6] T. A. Zherebeva, “Ob odnom klasse mnozhestv edinstvennosti dlya kratnykh ryadov Uolsha”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2009, no. 2, 14–21 | MR | Zbl

[7] M. G. Plotnikov, “O mnozhestvakh edinstvennosti dlya kratnykh ryadov Uolsha”, Matem. zametki, 81:2 (2007), 265–279 | DOI | MR | Zbl

[8] M. G. Plotnikov, “O kratnykh ryadakh Uolsha, skhodyaschikhsya po kubam”, Izv. RAN. Ser. matem., 71:1 (2007), 61–78 | DOI | MR | Zbl

[9] M. G. Plotnikov, “Kvazimery na gruppe $G^m$, mnozhestva Dirikhle i problemy edinstvennosti dlya kratnykh ryadov Uolsha”, Matem. sb., 201:12 (2010), 131–156 | DOI | MR | Zbl

[10] S. F. Lukomskii, “On a $U$-set for multiple Walsh series”, Anal. Math., 18:2 (1992), 127–138 | DOI | MR | Zbl

[11] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl

[12] F. Schipp, W. R. Wade, P. Simon, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Academiai Kiado, Budapest, 1990 | MR | Zbl