$\varphi$-Strong Approximation of Functions by Trigonometric Polynomials
Matematičeskie zametki, Tome 102 (2017) no. 1, pp. 52-63
Voir la notice de l'article provenant de la source Math-Net.Ru
The rate of $\varphi$-strong approximation of periodic functions by trigonometric polynomials constructed on the basis of interpolating polynomials with equidistant nodes is considered.
Mots-clés :
Fourier–Lagrange series
Keywords: group of deviations, best approximation, Dirichlet kernel.
Keywords: group of deviations, best approximation, Dirichlet kernel.
@article{MZM_2017_102_1_a5,
author = {R. A. Lasuriya},
title = {$\varphi${-Strong} {Approximation} of {Functions} by {Trigonometric} {Polynomials}},
journal = {Matemati\v{c}eskie zametki},
pages = {52--63},
publisher = {mathdoc},
volume = {102},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a5/}
}
R. A. Lasuriya. $\varphi$-Strong Approximation of Functions by Trigonometric Polynomials. Matematičeskie zametki, Tome 102 (2017) no. 1, pp. 52-63. http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a5/