$\varphi$-Strong Approximation of Functions by Trigonometric Polynomials
Matematičeskie zametki, Tome 102 (2017) no. 1, pp. 52-63

Voir la notice de l'article provenant de la source Math-Net.Ru

The rate of $\varphi$-strong approximation of periodic functions by trigonometric polynomials constructed on the basis of interpolating polynomials with equidistant nodes is considered.
Mots-clés : Fourier–Lagrange series
Keywords: group of deviations, best approximation, Dirichlet kernel.
@article{MZM_2017_102_1_a5,
     author = {R. A. Lasuriya},
     title = {$\varphi${-Strong} {Approximation} of {Functions} by {Trigonometric} {Polynomials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {52--63},
     publisher = {mathdoc},
     volume = {102},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a5/}
}
TY  - JOUR
AU  - R. A. Lasuriya
TI  - $\varphi$-Strong Approximation of Functions by Trigonometric Polynomials
JO  - Matematičeskie zametki
PY  - 2017
SP  - 52
EP  - 63
VL  - 102
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a5/
LA  - ru
ID  - MZM_2017_102_1_a5
ER  - 
%0 Journal Article
%A R. A. Lasuriya
%T $\varphi$-Strong Approximation of Functions by Trigonometric Polynomials
%J Matematičeskie zametki
%D 2017
%P 52-63
%V 102
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a5/
%G ru
%F MZM_2017_102_1_a5
R. A. Lasuriya. $\varphi$-Strong Approximation of Functions by Trigonometric Polynomials. Matematičeskie zametki, Tome 102 (2017) no. 1, pp. 52-63. http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a5/