On the Dirichlet--Riquier Problem for Biharmonic Equations
Matematičeskie zametki, Tome 102 (2017) no. 1, pp. 39-51
Voir la notice de l'article provenant de la source Math-Net.Ru
The existence of a solution of the Dirichlet–Riquier problem for a homogeneous biharmonic equation in the unit ball with boundary operators up to third order containing normal derivatives and the Laplacian is studied. Existence theorems for the solutions of the problem are proved.
Keywords:
biharmonic equation, boundary-value problem, normal derivatives, Laplacian.
@article{MZM_2017_102_1_a4,
author = {V. V. Karachik and B. T. Torebek},
title = {On the {Dirichlet--Riquier} {Problem} for {Biharmonic} {Equations}},
journal = {Matemati\v{c}eskie zametki},
pages = {39--51},
publisher = {mathdoc},
volume = {102},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a4/}
}
V. V. Karachik; B. T. Torebek. On the Dirichlet--Riquier Problem for Biharmonic Equations. Matematičeskie zametki, Tome 102 (2017) no. 1, pp. 39-51. http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a4/