Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_102_1_a10, author = {A. S. Fil'chenkov}, title = {On a {Class} of {Totally} {Topologically} {Transitive} {Skew} {Products} {Defined} on {Cells} in~$\mathbb R^n$, ${n\ge 2}$}, journal = {Matemati\v{c}eskie zametki}, pages = {109--124}, publisher = {mathdoc}, volume = {102}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a10/} }
TY - JOUR AU - A. S. Fil'chenkov TI - On a Class of Totally Topologically Transitive Skew Products Defined on Cells in~$\mathbb R^n$, ${n\ge 2}$ JO - Matematičeskie zametki PY - 2017 SP - 109 EP - 124 VL - 102 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a10/ LA - ru ID - MZM_2017_102_1_a10 ER -
%0 Journal Article %A A. S. Fil'chenkov %T On a Class of Totally Topologically Transitive Skew Products Defined on Cells in~$\mathbb R^n$, ${n\ge 2}$ %J Matematičeskie zametki %D 2017 %P 109-124 %V 102 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a10/ %G ru %F MZM_2017_102_1_a10
A. S. Fil'chenkov. On a Class of Totally Topologically Transitive Skew Products Defined on Cells in~$\mathbb R^n$, ${n\ge 2}$. Matematičeskie zametki, Tome 102 (2017) no. 1, pp. 109-124. http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a10/