Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_102_1_a10, author = {A. S. Fil'chenkov}, title = {On a {Class} of {Totally} {Topologically} {Transitive} {Skew} {Products} {Defined} on {Cells} in~$\mathbb R^n$, ${n\ge 2}$}, journal = {Matemati\v{c}eskie zametki}, pages = {109--124}, publisher = {mathdoc}, volume = {102}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a10/} }
TY - JOUR AU - A. S. Fil'chenkov TI - On a Class of Totally Topologically Transitive Skew Products Defined on Cells in~$\mathbb R^n$, ${n\ge 2}$ JO - Matematičeskie zametki PY - 2017 SP - 109 EP - 124 VL - 102 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a10/ LA - ru ID - MZM_2017_102_1_a10 ER -
%0 Journal Article %A A. S. Fil'chenkov %T On a Class of Totally Topologically Transitive Skew Products Defined on Cells in~$\mathbb R^n$, ${n\ge 2}$ %J Matematičeskie zametki %D 2017 %P 109-124 %V 102 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a10/ %G ru %F MZM_2017_102_1_a10
A. S. Fil'chenkov. On a Class of Totally Topologically Transitive Skew Products Defined on Cells in~$\mathbb R^n$, ${n\ge 2}$. Matematičeskie zametki, Tome 102 (2017) no. 1, pp. 109-124. http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a10/
[1] L. S. Efremova, A. S. Filchenkov, “Topologicheskaya tranzitivnost kosykh proizvedenii v ploskosti s otritsatelnym shvartsianom semeistva otobrazhenii v sloyakh”, Tr. MFTI, 4:4 (2012), 82–93
[2] L. S. Efremova, A. S. Filchenkov, “Boundary conditions for maps in fibers and topological transitivity of skew products of interval maps”, J. Math. Sci. (N. Y.), 208:1 (2015), 109–114 | DOI | MR | Zbl
[3] A. S. Filchenkov, Nekotorye topologicheski tranzitivnye kosye proizvedeniya na kletkakh v $\mathbb R^n$ ($n\ge 2$), Dep. v VINITI No 341-V2014, 2014
[4] W. de Melo, S. van Strien, One-Dimensional Dynamics, Ergeb. Math. Grenzgeb. (3), 25, Springer-Verlag, Berlin, 1996 | MR
[5] A. B. Katok, B. Khasselblat, Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999 | MR | Zbl
[6] Ll. Alsedá, M. A. Del Río, J. A. Rodríguez, “A survey on the relation between transitivity and dense periodicity for graph maps”, J. Difference Equ. Appl., 9:3-4 (2003), 281–288 | MR | Zbl
[7] A. Denjoy, “Sur les courbes defines par les équations différentielles à la surface du tore”, J. Math. Pures Appl., 11:9 (1932), 333–375 | Zbl
[8] A. Denjoy, “Les trajectories à la surface du tore”, C. R. Acad. Sci. Paris, 223 (1946), 5–8 | MR | Zbl
[9] A. Denjoy, “Sur les caractéristiques à la surface du tore”, C. R. Acad. Sci. Paris, 194 (1932), 830–833 | Zbl
[10] J. Guckenheimer, “Sensitive dependence on initial conditions for one dimensional maps”, Comm. Math. Phys., 70:2 (1979), 133–160 | DOI | MR | Zbl
[11] D. Singer, “Stable orbits and bifurcations of maps of the interval”, SIAM J. Appl. Math., 35:2 (1978), 260–267 | DOI | MR | Zbl
[12] A. N. Sharkovskii, Yu. L. Maistrenko, E. Yu. Romanenko, Raznostnye uravneniya i ikh prilozheniya, Naukova dumka, Kiev, 1986 | MR | Zbl
[13] L. Block, J. Guckenheimer, M. Misiurewicz, L. S. Young, “Periodic points and topological entropy of one-dimensional maps”, Global Theory of Dynamical Systems, Lecture Notes in Math., 819, Springer-Verlag, Berlin, 1980, 18–34 | DOI | MR | Zbl
[14] O. M. Sharkovskii, “Neblukayuchi tochki ta tsentr neperevnogo vidobrazheniya pryamoi v sebe”, Dop. AN URSR, 7 (1964), 865–868 | MR | Zbl
[15] E. D'Aniello, T. H. Steele, “Approximating $\omega$-limit sets with periodic orbits”, Aequationes Math., 75:1-2 (2008), 93–102 | DOI | MR | Zbl
[16] A. S. Filchenkov, “Kosoe proizvedenie na $n$-mernoi kletke, imeyuschee tranzitivnyi $n$-mernyi attraktor, ne obladayuschii svoistvom polnoi topologicheskoi tranzitivnosti”, Izv. vuzov. Matem., 2016, no. 6, 91–100 | Zbl