On a Class of Totally Topologically Transitive Skew Products Defined on Cells in~$\mathbb R^n$, ${n\ge 2}$
Matematičeskie zametki, Tome 102 (2017) no. 1, pp. 109-124

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain sufficient conditions for total topological transitivity (transitivity of all iterations) for a class of $C^3$ skew products defined on cells in $\mathbb R^n$, $n\ge 2$.
Keywords: discrete dynamical system, skew product, topological transitivity.
@article{MZM_2017_102_1_a10,
     author = {A. S. Fil'chenkov},
     title = {On a {Class} of {Totally} {Topologically} {Transitive} {Skew} {Products} {Defined} on {Cells} in~$\mathbb R^n$, ${n\ge 2}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {109--124},
     publisher = {mathdoc},
     volume = {102},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a10/}
}
TY  - JOUR
AU  - A. S. Fil'chenkov
TI  - On a Class of Totally Topologically Transitive Skew Products Defined on Cells in~$\mathbb R^n$, ${n\ge 2}$
JO  - Matematičeskie zametki
PY  - 2017
SP  - 109
EP  - 124
VL  - 102
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a10/
LA  - ru
ID  - MZM_2017_102_1_a10
ER  - 
%0 Journal Article
%A A. S. Fil'chenkov
%T On a Class of Totally Topologically Transitive Skew Products Defined on Cells in~$\mathbb R^n$, ${n\ge 2}$
%J Matematičeskie zametki
%D 2017
%P 109-124
%V 102
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a10/
%G ru
%F MZM_2017_102_1_a10
A. S. Fil'chenkov. On a Class of Totally Topologically Transitive Skew Products Defined on Cells in~$\mathbb R^n$, ${n\ge 2}$. Matematičeskie zametki, Tome 102 (2017) no. 1, pp. 109-124. http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a10/