On a Class of Totally Topologically Transitive Skew Products Defined on Cells in~$\mathbb R^n$, ${n\ge 2}$
Matematičeskie zametki, Tome 102 (2017) no. 1, pp. 109-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain sufficient conditions for total topological transitivity (transitivity of all iterations) for a class of $C^3$ skew products defined on cells in $\mathbb R^n$, $n\ge 2$.
Keywords: discrete dynamical system, skew product, topological transitivity.
@article{MZM_2017_102_1_a10,
     author = {A. S. Fil'chenkov},
     title = {On a {Class} of {Totally} {Topologically} {Transitive} {Skew} {Products} {Defined} on {Cells} in~$\mathbb R^n$, ${n\ge 2}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {109--124},
     publisher = {mathdoc},
     volume = {102},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a10/}
}
TY  - JOUR
AU  - A. S. Fil'chenkov
TI  - On a Class of Totally Topologically Transitive Skew Products Defined on Cells in~$\mathbb R^n$, ${n\ge 2}$
JO  - Matematičeskie zametki
PY  - 2017
SP  - 109
EP  - 124
VL  - 102
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a10/
LA  - ru
ID  - MZM_2017_102_1_a10
ER  - 
%0 Journal Article
%A A. S. Fil'chenkov
%T On a Class of Totally Topologically Transitive Skew Products Defined on Cells in~$\mathbb R^n$, ${n\ge 2}$
%J Matematičeskie zametki
%D 2017
%P 109-124
%V 102
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a10/
%G ru
%F MZM_2017_102_1_a10
A. S. Fil'chenkov. On a Class of Totally Topologically Transitive Skew Products Defined on Cells in~$\mathbb R^n$, ${n\ge 2}$. Matematičeskie zametki, Tome 102 (2017) no. 1, pp. 109-124. http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a10/

[1] L. S. Efremova, A. S. Filchenkov, “Topologicheskaya tranzitivnost kosykh proizvedenii v ploskosti s otritsatelnym shvartsianom semeistva otobrazhenii v sloyakh”, Tr. MFTI, 4:4 (2012), 82–93

[2] L. S. Efremova, A. S. Filchenkov, “Boundary conditions for maps in fibers and topological transitivity of skew products of interval maps”, J. Math. Sci. (N. Y.), 208:1 (2015), 109–114 | DOI | MR | Zbl

[3] A. S. Filchenkov, Nekotorye topologicheski tranzitivnye kosye proizvedeniya na kletkakh v $\mathbb R^n$ ($n\ge 2$), Dep. v VINITI No 341-V2014, 2014

[4] W. de Melo, S. van Strien, One-Dimensional Dynamics, Ergeb. Math. Grenzgeb. (3), 25, Springer-Verlag, Berlin, 1996 | MR

[5] A. B. Katok, B. Khasselblat, Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999 | MR | Zbl

[6] Ll. Alsedá, M. A. Del Río, J. A. Rodríguez, “A survey on the relation between transitivity and dense periodicity for graph maps”, J. Difference Equ. Appl., 9:3-4 (2003), 281–288 | MR | Zbl

[7] A. Denjoy, “Sur les courbes defines par les équations différentielles à la surface du tore”, J. Math. Pures Appl., 11:9 (1932), 333–375 | Zbl

[8] A. Denjoy, “Les trajectories à la surface du tore”, C. R. Acad. Sci. Paris, 223 (1946), 5–8 | MR | Zbl

[9] A. Denjoy, “Sur les caractéristiques à la surface du tore”, C. R. Acad. Sci. Paris, 194 (1932), 830–833 | Zbl

[10] J. Guckenheimer, “Sensitive dependence on initial conditions for one dimensional maps”, Comm. Math. Phys., 70:2 (1979), 133–160 | DOI | MR | Zbl

[11] D. Singer, “Stable orbits and bifurcations of maps of the interval”, SIAM J. Appl. Math., 35:2 (1978), 260–267 | DOI | MR | Zbl

[12] A. N. Sharkovskii, Yu. L. Maistrenko, E. Yu. Romanenko, Raznostnye uravneniya i ikh prilozheniya, Naukova dumka, Kiev, 1986 | MR | Zbl

[13] L. Block, J. Guckenheimer, M. Misiurewicz, L. S. Young, “Periodic points and topological entropy of one-dimensional maps”, Global Theory of Dynamical Systems, Lecture Notes in Math., 819, Springer-Verlag, Berlin, 1980, 18–34 | DOI | MR | Zbl

[14] O. M. Sharkovskii, “Neblukayuchi tochki ta tsentr neperevnogo vidobrazheniya pryamoi v sebe”, Dop. AN URSR, 7 (1964), 865–868 | MR | Zbl

[15] E. D'Aniello, T. H. Steele, “Approximating $\omega$-limit sets with periodic orbits”, Aequationes Math., 75:1-2 (2008), 93–102 | DOI | MR | Zbl

[16] A. S. Filchenkov, “Kosoe proizvedenie na $n$-mernoi kletke, imeyuschee tranzitivnyi $n$-mernyi attraktor, ne obladayuschii svoistvom polnoi topologicheskoi tranzitivnosti”, Izv. vuzov. Matem., 2016, no. 6, 91–100 | Zbl