Semiclassical Asymptotics of the Spectrum near the Lower Boundary of Spectral Clusters for a Hartree-Type Operator
Matematičeskie zametki, Tome 101 (2017) no. 6, pp. 894-910.

Voir la notice de l'article provenant de la source Math-Net.Ru

The eigenvalue problem for a perturbed two-dimensional resonant oscillator is considered. The exciting potential is given by a nonlocal nonlinearity of Hartree type with smooth self-action potential. To each representation of the rotation algebra corresponds the spectral cluster around an energy level of the unperturbed operator. Asymptotic eigenvalues and asymptotic eigenfunctions close to the lower boundary of spectral clusters are obtained. For their calculation, asymptotic formulas for quantum means are used.
Keywords: self-consistent field, spectral cluster, quantum averaging method, coherent transformation, the WKB approximation, turning point.
@article{MZM_2017_101_6_a9,
     author = {A. V. Pereskokov},
     title = {Semiclassical {Asymptotics} of the {Spectrum} near the {Lower} {Boundary} of {Spectral} {Clusters} for a {Hartree-Type} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {894--910},
     publisher = {mathdoc},
     volume = {101},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a9/}
}
TY  - JOUR
AU  - A. V. Pereskokov
TI  - Semiclassical Asymptotics of the Spectrum near the Lower Boundary of Spectral Clusters for a Hartree-Type Operator
JO  - Matematičeskie zametki
PY  - 2017
SP  - 894
EP  - 910
VL  - 101
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a9/
LA  - ru
ID  - MZM_2017_101_6_a9
ER  - 
%0 Journal Article
%A A. V. Pereskokov
%T Semiclassical Asymptotics of the Spectrum near the Lower Boundary of Spectral Clusters for a Hartree-Type Operator
%J Matematičeskie zametki
%D 2017
%P 894-910
%V 101
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a9/
%G ru
%F MZM_2017_101_6_a9
A. V. Pereskokov. Semiclassical Asymptotics of the Spectrum near the Lower Boundary of Spectral Clusters for a Hartree-Type Operator. Matematičeskie zametki, Tome 101 (2017) no. 6, pp. 894-910. http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a9/

[1] N. N. Bogolyubov, “Ob odnoi novoi forme adiabaticheskoi teorii vozmuschenii v zadache o vzaimodeistvii chastitsy s kvantovannym polem”, Ukr. matem. zhurn., 2:2 (1950), 3–24 | MR | Zbl

[2] L. P. Pitaevskii, “Kondensatsiya Boze–Einshteina v magnitnykh lovushkakh. Vvedenie v teoriyu”, UFN, 168:6 (1998), 641–653 | DOI

[3] A. S. Davydov, Solitony v molekulyarnykh sistemakh, Naukova dumka, Kiev, 1984 | MR

[4] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR | Zbl

[5] M. V. Karasev, Kvantovaya reduktsiya na orbity algebr simmetrii i zadacha Erenfesta, Preprint ITF-87-157R, ITF AN USSR, Kiev, 1987

[6] M. V. Karasev, A. V. Pereskokov, “Asimptoticheskie resheniya uravnenii Khartri, sosredotochennye vblizi malomernykh podmnogoobrazii. I. Model s logarifmicheskoi osobennostyu”, Izv. RAN. Ser. matem., 65:5 (2001), 33–72 | DOI | MR | Zbl

[7] M. V. Karasev, A. V. Pereskokov, “Asimptoticheskie resheniya uravnenii Khartri, sosredotochennye vblizi malomernykh podmnogoobrazii. II. Lokalizatsiya v ploskikh diskakh”, Izv. RAN. Ser. matem., 65:6 (2001), 57–98 | DOI | MR | Zbl

[8] V. V. Belov, F. N. Litvinets, A. Yu. Trifonov, “Kvaziklassicheskie spektralnye serii operatora tipa Khartri, otvechayuschie tochke pokoya klassicheskoi sistemy Gamiltona–Erenfesta”, TMF, 150:1 (2007), 26–40 | DOI | MR | Zbl

[9] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v difraktsii korotkikh voln. Metod etalonnykh zadach, Nauka, M., 1972 | MR | Zbl

[10] M. V. Karasev, V. P. Maslov, “Asimptoticheskoe i geometricheskoe kvantovanie”, UMN, 39:6 (240) (1984), 115–173 | MR | Zbl

[11] M. V. Karasev, “Birkhoff resonances and quantum ray method”, Days on Diffraction' 2004, Proceedings of the International Seminar, St. Petersburg, 2004, 114–126

[12] M. Karasev, “Noncommutative algebras, nanostructures, and quantum dynamics generated by resonances”, Quanum Algebras and Poisson Geometry in Mathematical Phisics, Amer. Math. Soc. Trans. Ser. 2, 216, Amer. Math. Soc., Providence, RI, 2005, 1–17 ; “Noncommutative algebras, nanostructures, and quantum dynamics generated by resonances. II”, Adv. Stud. Contemp. Math. (Kyungshang), 11:1 (2005), 33–56 ; “Noncommutative algebras, nano-structures, and quantum dynamics generated by resonances. III”, Russ. J. Math. Phis., 13:2 (2006), 131–150 | MR | Zbl | MR | Zbl | DOI | Zbl

[13] A. V. Pereskokov, “Asimptotika spektra i kvantovykh srednikh vblizi granits spektralnykh klasterov dlya vozmuschennogo dvumernogo ostsillyatora”, Matem. zametki, 92:4 (2012), 583–596 | DOI | MR | Zbl

[14] A. V. Pereskokov, “Asimptotika spektra i kvantovykh srednikh vozmuschennogo rezonansnogo ostsillyatora vblizi granits spektralnykh klasterov”, Izv. RAN. Ser. matem., 77:1 (2013), 165–210 | DOI | MR | Zbl

[15] A. V. Pereskokov, “Kvaziklassicheskaya asimptotika spektra operatora tipa Khartri vblizi verkhnikh granits spektralnykh klasterov”, TMF, 178:1 (2014), 88–106 | DOI | MR | Zbl

[16] A. V. Pereskokov, “Kvaziklassicheskaya asimptotika spektra vblizi verkhnikh granits spektralnykh klasterov dlya operatora tipa Khartri”, Nanostruktury. Matem. fizika i modelirovanie, 10:1 (2014), 77–112

[17] V. V. Golubev, Lektsii po analiticheskoi teorii differentsialnykh uravnenii, GITTL, M.–L., 1950 | MR | Zbl

[18] A. Weinstein, “Asymptotics of the eigenvalues clusters for the Laplasian plus a potential”, Duke Math. J., 44:4 (1977), 883–892 | DOI | MR | Zbl

[19] J. Schwinger, “On angular momentum”, Quantum Theory of Angular Momentum, Academic Press, New York, 1965, 229–279

[20] M. Karasev, E. Novikova, “Non-Lie permutation relations, coherent states, and quantum embedding”, Coherent Transform, Quantization, and Poisson Geometry, Amer. Math. Soc. Trans. Ser. 2, 187, Amer. Math. Soc., Providence, RI, 1998, 1–202 | MR | Zbl

[21] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1974 | MR | Zbl

[22] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1983 | MR | Zbl

[23] Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, eds. M. Abramovits, I. Stigan, Nauka, M., 1979 | MR | Zbl