Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_101_6_a8, author = {K. S. Lapin}, title = {Higher-Order {Derivatives} of {Lyapunov} {Functions} and {Partial} {Boundedness} of {Solutions} with {Partially} {Controllable} {Initial} {Conditions}}, journal = {Matemati\v{c}eskie zametki}, pages = {883--893}, publisher = {mathdoc}, volume = {101}, number = {6}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a8/} }
TY - JOUR AU - K. S. Lapin TI - Higher-Order Derivatives of Lyapunov Functions and Partial Boundedness of Solutions with Partially Controllable Initial Conditions JO - Matematičeskie zametki PY - 2017 SP - 883 EP - 893 VL - 101 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a8/ LA - ru ID - MZM_2017_101_6_a8 ER -
%0 Journal Article %A K. S. Lapin %T Higher-Order Derivatives of Lyapunov Functions and Partial Boundedness of Solutions with Partially Controllable Initial Conditions %J Matematičeskie zametki %D 2017 %P 883-893 %V 101 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a8/ %G ru %F MZM_2017_101_6_a8
K. S. Lapin. Higher-Order Derivatives of Lyapunov Functions and Partial Boundedness of Solutions with Partially Controllable Initial Conditions. Matematičeskie zametki, Tome 101 (2017) no. 6, pp. 883-893. http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a8/
[1] T. Yoshizawa, “Liapunov's function and boundedness of solutions”, Funkcial. Ekvac., 2 (1959), 95–142 | MR | Zbl
[2] V. V. Rumyantsev, A. S. Oziraner, Ustoichivost i stabilizatsiya dvizheniya otnositelno chasti peremennykh, Nauka, M., 1987 | MR | Zbl
[3] V. I. Vorotnikov, “Ob ustoichivosti i ustoichivosti po chasti peremennykh chastichnykh polozhenii ravnovesiya nelineinykh dinamicheskikh sistem”, Dokl. AN, 389:3 (2003), 332–337 | MR
[4] V. I. Vorotnikov, Yu. G. Martyshenko, “K zadache chastichnoi detektiruemosti nelineinykh dinamicheskikh sistem”, Avtomat. i telemekh., 2009, no. 1, 25–38 | MR | Zbl
[5] V. I. Vorotnikov, Yu. G. Martyshenko, “K teorii chastichnoi ustoichivosti nelineinykh dinamicheskikh sistem”, Izv. RAN. Teor. sist. upravl., 2010, no. 5, 23–31 | MR | Zbl
[6] V. I. Vorotnikov, Yu. G. Martyshenko, “K zadacham chastichnoi ustoichivosti dlya sistem s posledeistviem”, Tr. IMM UrO RAN, 19, no. 1, 2013, 49–58 | MR
[7] V. I. Vorotnikov, Yu. G. Martyshenko, “Ob ustoichivosti po chasti peremennykh “chastichnykh” polozhenii ravnovesiya sistem s posledeistviem”, Matem. zametki, 96:4 (2014), 496–503 | DOI | MR | Zbl
[8] E. V. Schennikova, “Ustoichivopodobnye svoistva reshenii odnoi mnogosvyaznoi sistemy differentsialnykh uravnenii”, Matem. zametki, 91:1 (2012), 136–142 | DOI
[9] A. V. Schennikov, “Printsip vklyucheniya i ustoichivopodobnye svoistva “chastichnogo” polozheniya ravnovesiya dinamicheskikh sistem”, Vestn. SPbGU. Ser. 10. Prikl. matem. Inform. Prots. upravl., 2011, no. 4, 119–132
[10] K. S. Lapin, “Chastichnaya ravnomernaya ogranichennost reshenii sistem differentsialnykh uravnenii s chastichno kontroliruemymi nachalnymi usloviyami”, Differents. uravneniya, 50:3 (2014), 309–316 | DOI | MR | Zbl
[11] K. S. Lapin, “Ogranichennost v predele reshenii sistem differentsialnykh uravnenii po chasti peremennykh s chastichno kontroliruemymi nachalnymi usloviyami”, Differents. uravneniya, 49:10 (2013), 1281–1286 | MR | Zbl
[12] E. V. Schennikova, “Funktsii Lyapunova i ogranichennost v predele otnositelno chasti peremennykh”, Matem. modelirovanie, 9:10 (1997), 24
[13] K. S. Lapin, “Ravnomernaya ogranichennost reshenii sistem differentsialnykh uravnenii po chasti peremennykh s chastichno kontroliruemymi nachalnymi usloviyami”, Matem. zametki, 96:3 (2014), 393–404 | DOI | Zbl
[14] K. S. Lapin, “Chastichnaya totalnaya ogranichennost reshenii sistem differentsialnykh uravnenii s chastichno kontroliruemymi nachalnymi usloviyami”, Matem. zametki, 99:2 (2016), 239–247 | DOI | MR | Zbl
[15] R. Z. Abdullin, L. Yu. Anapolskii, A. A. Voronov, A. S. Zemlyakov, R. I. Kozlov, A. I. Malikov, V. M. Matrosov, Metod vektornykh funktsii Lyapunova v teorii ustoichivosti, Nauka, M., 1987 | MR | Zbl
[16] V. M. Matrosov, Metod vektornykh funktsii Lyapunova: analiz dinamicheskikh svoistv nelineinykh sistem, Fizmatlit, M., 2001 | Zbl