Asymptotics of Multipoint Hermite–Padé Approximants of the First Type for Two Beta Functions
Matematičeskie zametki, Tome 101 (2017) no. 6, pp. 871-882
Cet article a éte moissonné depuis la source Math-Net.Ru
The asymptotic behavior of the Hermite–Padé approximants of the first type for two beta functions are studied. The results are expressed in terms of equilibrium problems of logarithmic potential theory and in terms of meromorphic functions on Riemann surfaces.
Keywords:
beta function, saddle-point method, Riemann surface, equilibrium potential.
Mots-clés : Hermite–Padé approximant
Mots-clés : Hermite–Padé approximant
@article{MZM_2017_101_6_a7,
author = {A. A. Kandayan and V. N. Sorokin},
title = {Asymptotics of {Multipoint} {Hermite{\textendash}Pad\'e} {Approximants} of the {First} {Type} for {Two} {Beta} {Functions}},
journal = {Matemati\v{c}eskie zametki},
pages = {871--882},
year = {2017},
volume = {101},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a7/}
}
TY - JOUR AU - A. A. Kandayan AU - V. N. Sorokin TI - Asymptotics of Multipoint Hermite–Padé Approximants of the First Type for Two Beta Functions JO - Matematičeskie zametki PY - 2017 SP - 871 EP - 882 VL - 101 IS - 6 UR - http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a7/ LA - ru ID - MZM_2017_101_6_a7 ER -
A. A. Kandayan; V. N. Sorokin. Asymptotics of Multipoint Hermite–Padé Approximants of the First Type for Two Beta Functions. Matematičeskie zametki, Tome 101 (2017) no. 6, pp. 871-882. http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a7/
[1] A. A. Kandayan, “Mnogotochechnye approksimatsii Pade beta-funktsii”, Matem. zametki, 85:2 (2009), 189–203 | DOI | MR | Zbl
[2] A. A. Kandayan, V. N. Sorokin, “Mnogotochechnye approksimatsii Ermita–Pade beta-funktsii”, Matem. zametki, 87:2 (2010), 217–232 | DOI | MR | Zbl
[3] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl
[4] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Ob approksimatsiyakh Ermita–Pade dlya sistem funktsii markovskogo tipa”, Matem. sb., 188:5 (1997), 33–58 | DOI | MR | Zbl