Checking the Congruence between Accretive Matrices
Matematičeskie zametki, Tome 101 (2017) no. 6, pp. 854-859
Cet article a éte moissonné depuis la source Math-Net.Ru
We call a finite computational process using only arithmetic operations a rational algorithm. A rational algorithm that is able to check the congruence between arbitrary complex matrices $A$ and $B$ is currently not known. The situation may be different if $A$ and $B$ belong to a certain class of special matrices. For instance, there exist rational algorithms for the case where both matrices are Hermitian or unitary. In this paper, rational algorithms for checking the congruence between accretive or dissipative $A$ and $B$ are proposed.
Keywords:
accretive matrix, canonical form
Mots-clés : dissipative matrix, congruences, rational algorithm.
Mots-clés : dissipative matrix, congruences, rational algorithm.
@article{MZM_2017_101_6_a5,
author = {Kh. D. Ikramov},
title = {Checking the {Congruence} between {Accretive} {Matrices}},
journal = {Matemati\v{c}eskie zametki},
pages = {854--859},
year = {2017},
volume = {101},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a5/}
}
Kh. D. Ikramov. Checking the Congruence between Accretive Matrices. Matematičeskie zametki, Tome 101 (2017) no. 6, pp. 854-859. http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a5/
[1] Kh. D. Ikramov, “O konechnykh spektralnykh protsedurakh v lineinoi algebre”, Programmirovanie, 1994, no. 1, 56–69
[2] V. V. Prasolov, Mnogochleny, MTsNMO, M., 2001
[3] R. A. Horn, V. V. Sergeichuk, “Canonical forms for unitary congruence and *congruence”, Linear Multilinear Algebra, 57:8 (2009), 777–815 | DOI | MR | Zbl
[4] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge, 2013 | MR | Zbl
[5] R. A. Horn, V. V. Sergeichuk, “Canonical forms for complex matrices congruence and *congruence”, Linear Algebra Appl., 416:2-3 (2006), 1010–1032 | DOI | MR | Zbl