Checking the Congruence between Accretive Matrices
Matematičeskie zametki, Tome 101 (2017) no. 6, pp. 854-859.

Voir la notice de l'article provenant de la source Math-Net.Ru

We call a finite computational process using only arithmetic operations a rational algorithm. A rational algorithm that is able to check the congruence between arbitrary complex matrices $A$ and $B$ is currently not known. The situation may be different if $A$ and $B$ belong to a certain class of special matrices. For instance, there exist rational algorithms for the case where both matrices are Hermitian or unitary. In this paper, rational algorithms for checking the congruence between accretive or dissipative $A$ and $B$ are proposed.
Keywords: accretive matrix, canonical form
Mots-clés : dissipative matrix, congruences, rational algorithm.
@article{MZM_2017_101_6_a5,
     author = {Kh. D. Ikramov},
     title = {Checking the {Congruence} between {Accretive} {Matrices}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {854--859},
     publisher = {mathdoc},
     volume = {101},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a5/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - Checking the Congruence between Accretive Matrices
JO  - Matematičeskie zametki
PY  - 2017
SP  - 854
EP  - 859
VL  - 101
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a5/
LA  - ru
ID  - MZM_2017_101_6_a5
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T Checking the Congruence between Accretive Matrices
%J Matematičeskie zametki
%D 2017
%P 854-859
%V 101
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a5/
%G ru
%F MZM_2017_101_6_a5
Kh. D. Ikramov. Checking the Congruence between Accretive Matrices. Matematičeskie zametki, Tome 101 (2017) no. 6, pp. 854-859. http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a5/

[1] Kh. D. Ikramov, “O konechnykh spektralnykh protsedurakh v lineinoi algebre”, Programmirovanie, 1994, no. 1, 56–69

[2] V. V. Prasolov, Mnogochleny, MTsNMO, M., 2001

[3] R. A. Horn, V. V. Sergeichuk, “Canonical forms for unitary congruence and *congruence”, Linear Multilinear Algebra, 57:8 (2009), 777–815 | DOI | MR | Zbl

[4] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge, 2013 | MR | Zbl

[5] R. A. Horn, V. V. Sergeichuk, “Canonical forms for complex matrices congruence and *congruence”, Linear Algebra Appl., 416:2-3 (2006), 1010–1032 | DOI | MR | Zbl