Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_101_6_a13, author = {S. Yu. Dobrokhotov and V. E. Nazaikinskii}, title = {Punctured {Lagrangian} manifolds and asymptotic solutions of linear water wave equations with localized initial conditions}, journal = {Matemati\v{c}eskie zametki}, pages = {936--943}, publisher = {mathdoc}, volume = {101}, number = {6}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a13/} }
TY - JOUR AU - S. Yu. Dobrokhotov AU - V. E. Nazaikinskii TI - Punctured Lagrangian manifolds and asymptotic solutions of linear water wave equations with localized initial conditions JO - Matematičeskie zametki PY - 2017 SP - 936 EP - 943 VL - 101 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a13/ LA - ru ID - MZM_2017_101_6_a13 ER -
%0 Journal Article %A S. Yu. Dobrokhotov %A V. E. Nazaikinskii %T Punctured Lagrangian manifolds and asymptotic solutions of linear water wave equations with localized initial conditions %J Matematičeskie zametki %D 2017 %P 936-943 %V 101 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a13/ %G ru %F MZM_2017_101_6_a13
S. Yu. Dobrokhotov; V. E. Nazaikinskii. Punctured Lagrangian manifolds and asymptotic solutions of linear water wave equations with localized initial conditions. Matematičeskie zametki, Tome 101 (2017) no. 6, pp. 936-943. http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a13/
[1] J. J. Stoker, Water Waves: The Mathematical Theory with Applications, John Wiley Sons, New York, 1992 | MR | Zbl
[2] E. N. Pelinovskii, Gidrodinamika voln tsunami, IPF RAN, Nizhnii Novgorod, 1996
[3] C. C. Mei, The Applied Dynamics of Ocean Surface Waves, John Wiley Sons, New York, 1983 | Zbl
[4] D. A. Indeitsev, N. G. Kuznetsov, O. V. Motygin, Yu. A. Mochalova, Lokalizatsiya lineinykh voln, Izd-vo SPbGU, SPb., 2007
[5] S. Yu. Dobrokhotov, Dokl. AN SSSR, 269:1 (1983), 76–80 | MR | Zbl
[6] S. Yu. Dobrokhotov, P. N. Zhevandrov, Funkts. analiz i ego pril., 19:4 (1985), 43–54 | MR | Zbl
[7] S. Yu. Dobrokhotov, P. N. Zhevandrov, M. V. Kuzmina, Matem. zametki, 53:6 (1993), 141–148 | MR | Zbl
[8] V. P. Maslov, UMN, 38:6 (234) (1983), 3–36 | MR | Zbl
[9] M. V. Berry, New J. Phys., 7:129 (2005) | DOI
[10] M. V .Berry, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463:2087 (2007), 3055–3071 | DOI | MR | Zbl
[11] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965
[12] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl
[13] S. Yu. Dobrokhotov, A. I. Shafarevich, B. Tirozzi, Russ. J. Math. Phys., 15:2 (2008), 192–221 | DOI | MR | Zbl
[14] S. Yu. Dobrokhotov, R. V. Nekrasov, B. Tirozzi, J. Engng. Math., 69:2-3 (2011), 225–242 | DOI | MR | Zbl
[15] S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. I. Shafarevich, Dokl. AN, 466:6 (2016), 641–644 | DOI | MR | Zbl
[16] S. Yu. Dobrokhotov, S. A. Sergeev, B. Tirozzi, Russ. J. Math. Phys., 20:2 (2013), 155–171 | DOI | MR | Zbl
[17] S. Ya. Sekerzh-Zenkovich, Russ. J. Math. Phys., 16:2 (2009), 315–322 | DOI | MR | Zbl