Punctured Lagrangian manifolds and asymptotic solutions of linear water wave equations with localized initial conditions
Matematičeskie zametki, Tome 101 (2017) no. 6, pp. 936-943.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mots-clés : Cauchy–Poisson problem
Keywords: water waves, localized initial conditions, asymptotics, Maslov's canonical operator.
@article{MZM_2017_101_6_a13,
     author = {S. Yu. Dobrokhotov and V. E. Nazaikinskii},
     title = {Punctured {Lagrangian} manifolds and asymptotic solutions of linear water wave equations with localized initial conditions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {936--943},
     publisher = {mathdoc},
     volume = {101},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a13/}
}
TY  - JOUR
AU  - S. Yu. Dobrokhotov
AU  - V. E. Nazaikinskii
TI  - Punctured Lagrangian manifolds and asymptotic solutions of linear water wave equations with localized initial conditions
JO  - Matematičeskie zametki
PY  - 2017
SP  - 936
EP  - 943
VL  - 101
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a13/
LA  - ru
ID  - MZM_2017_101_6_a13
ER  - 
%0 Journal Article
%A S. Yu. Dobrokhotov
%A V. E. Nazaikinskii
%T Punctured Lagrangian manifolds and asymptotic solutions of linear water wave equations with localized initial conditions
%J Matematičeskie zametki
%D 2017
%P 936-943
%V 101
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a13/
%G ru
%F MZM_2017_101_6_a13
S. Yu. Dobrokhotov; V. E. Nazaikinskii. Punctured Lagrangian manifolds and asymptotic solutions of linear water wave equations with localized initial conditions. Matematičeskie zametki, Tome 101 (2017) no. 6, pp. 936-943. http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a13/

[1] J. J. Stoker, Water Waves: The Mathematical Theory with Applications, John Wiley Sons, New York, 1992 | MR | Zbl

[2] E. N. Pelinovskii, Gidrodinamika voln tsunami, IPF RAN, Nizhnii Novgorod, 1996

[3] C. C. Mei, The Applied Dynamics of Ocean Surface Waves, John Wiley Sons, New York, 1983 | Zbl

[4] D. A. Indeitsev, N. G. Kuznetsov, O. V. Motygin, Yu. A. Mochalova, Lokalizatsiya lineinykh voln, Izd-vo SPbGU, SPb., 2007

[5] S. Yu. Dobrokhotov, Dokl. AN SSSR, 269:1 (1983), 76–80 | MR | Zbl

[6] S. Yu. Dobrokhotov, P. N. Zhevandrov, Funkts. analiz i ego pril., 19:4 (1985), 43–54 | MR | Zbl

[7] S. Yu. Dobrokhotov, P. N. Zhevandrov, M. V. Kuzmina, Matem. zametki, 53:6 (1993), 141–148 | MR | Zbl

[8] V. P. Maslov, UMN, 38:6 (234) (1983), 3–36 | MR | Zbl

[9] M. V. Berry, New J. Phys., 7:129 (2005) | DOI

[10] M. V .Berry, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463:2087 (2007), 3055–3071 | DOI | MR | Zbl

[11] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965

[12] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl

[13] S. Yu. Dobrokhotov, A. I. Shafarevich, B. Tirozzi, Russ. J. Math. Phys., 15:2 (2008), 192–221 | DOI | MR | Zbl

[14] S. Yu. Dobrokhotov, R. V. Nekrasov, B. Tirozzi, J. Engng. Math., 69:2-3 (2011), 225–242 | DOI | MR | Zbl

[15] S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. I. Shafarevich, Dokl. AN, 466:6 (2016), 641–644 | DOI | MR | Zbl

[16] S. Yu. Dobrokhotov, S. A. Sergeev, B. Tirozzi, Russ. J. Math. Phys., 20:2 (2013), 155–171 | DOI | MR | Zbl

[17] S. Ya. Sekerzh-Zenkovich, Russ. J. Math. Phys., 16:2 (2009), 315–322 | DOI | MR | Zbl