Existence of the Global Solutions of the Cauchy Problem for a System of Semilinear Pseudohyperbolic Equations with Structural Dissipation
Matematičeskie zametki, Tome 101 (2017) no. 6, pp. 932-935.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: pseudohyperbolic equation, global solvability, structural dissipation.
@article{MZM_2017_101_6_a12,
     author = {A. B. Aliev and P. F. Asif},
     title = {Existence of the {Global} {Solutions} of the {Cauchy} {Problem} for a {System} of {Semilinear} {Pseudohyperbolic} {Equations} with {Structural} {Dissipation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {932--935},
     publisher = {mathdoc},
     volume = {101},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a12/}
}
TY  - JOUR
AU  - A. B. Aliev
AU  - P. F. Asif
TI  - Existence of the Global Solutions of the Cauchy Problem for a System of Semilinear Pseudohyperbolic Equations with Structural Dissipation
JO  - Matematičeskie zametki
PY  - 2017
SP  - 932
EP  - 935
VL  - 101
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a12/
LA  - ru
ID  - MZM_2017_101_6_a12
ER  - 
%0 Journal Article
%A A. B. Aliev
%A P. F. Asif
%T Existence of the Global Solutions of the Cauchy Problem for a System of Semilinear Pseudohyperbolic Equations with Structural Dissipation
%J Matematičeskie zametki
%D 2017
%P 932-935
%V 101
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a12/
%G ru
%F MZM_2017_101_6_a12
A. B. Aliev; P. F. Asif. Existence of the Global Solutions of the Cauchy Problem for a System of Semilinear Pseudohyperbolic Equations with Structural Dissipation. Matematičeskie zametki, Tome 101 (2017) no. 6, pp. 932-935. http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a12/

[1] A. B. Aliev, A. A. Kazimov, Differents. uravneniya, 45:2 (2009), 169–179 | MR | Zbl

[2] A. B. Aliev, A. A. Kazimov, Nonlinear Anal., 75:1 (2012), 91–102 | DOI | MR | Zbl

[3] M. D'Abbicco, M. R. Ebert, J. Math. Anal. Appl., 399:1 (2013), 315–332 | DOI | MR | Zbl

[4] M. D'Abbicco, M. Reissig, Math. Methods Appl. Sci., 37:11 (2014), 1570–1592 | DOI | MR | Zbl

[5] M. D'Abbicco, M. R. Ebert, Nonlinear Anal., 99 (2014), 16–34 | DOI | MR | Zbl

[6] J. L. Horbach, R. Ikehata, R. C. Charão, J. Math. Anal. Appl., 440:2 (2016), 529–560 | DOI | MR | Zbl

[7] A. B. Aliev, A. F. Pashaev, Dokl. AN, 465:1 (2015), 7–10 | DOI | MR | Zbl

[8] A. B. Aliev, Dokl. AN SSSR, 240:2 (1978), 249–252 | MR | Zbl

[9] I. Segal, Ann. Sci. École Norm. Sup. (4), 1 (1968), 459–497 | MR | Zbl