Continuous $\varepsilon$-Selection and Monotone Path-Connected Sets
Matematičeskie zametki, Tome 101 (2017) no. 6, pp. 919-931.

Voir la notice de l'article provenant de la source Math-Net.Ru

The sets with continuous selection from near-best approximations and the monotone path-connected sets are studied; several examples of such sets are also considered.
Keywords: continuous selections, monotone path-connected sets.
@article{MZM_2017_101_6_a11,
     author = {I. G. Tsar'kov},
     title = {Continuous $\varepsilon${-Selection} and {Monotone} {Path-Connected} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {919--931},
     publisher = {mathdoc},
     volume = {101},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a11/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - Continuous $\varepsilon$-Selection and Monotone Path-Connected Sets
JO  - Matematičeskie zametki
PY  - 2017
SP  - 919
EP  - 931
VL  - 101
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a11/
LA  - ru
ID  - MZM_2017_101_6_a11
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T Continuous $\varepsilon$-Selection and Monotone Path-Connected Sets
%J Matematičeskie zametki
%D 2017
%P 919-931
%V 101
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a11/
%G ru
%F MZM_2017_101_6_a11
I. G. Tsar'kov. Continuous $\varepsilon$-Selection and Monotone Path-Connected Sets. Matematičeskie zametki, Tome 101 (2017) no. 6, pp. 919-931. http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a11/

[1] A. R. Alimov, I. G. Tsarkov, “Svyaznost i drugie geometricheskie svoistva solnts i chebyshevskikh mnozhestv”, Fundament. i prikl. matem., 19:4 (2014), 21–91 | MR

[2] A. R. Alimov, I. G. Tsarkov, “Svyaznost i solnechnost v zadachakh nailuchshego i pochti nailuchshego priblizheniya”, UMN, 71:1 (427) (2016), 3–84 | DOI | MR | Zbl

[3] I. G. Tsarkov, “Svoistva mnozhestv, obladayuschikh nepreryvnoi vyborkoi iz operatora $P^\delta$”, Matem. zametki, 48:4 (1990), 122–131 | MR | Zbl

[4] S. V. Konyagin, “O nepreryvnykh operatorakh obobschennogo ratsionalnogo priblizheniya”, Matem. zametki, 44:3 (1988), 404 | MR | Zbl

[5] E. D. Livshits, “Ob ustoichivosti operatora $\varepsilon$-proektsii na mnozhestvo splainov v prostranstve $C[0,1]$”, Izv. RAN. Ser. matem., 67:1 (2003), 99–130 | DOI | MR | Zbl

[6] K. S. Ryutin, “Nepreryvnost operatorov obobschennogo ratsionalnogo priblizheniya v prostranstve $L_1[0;1]$”, Matem. zametki, 73:1 (2003), 148–153 | DOI | MR | Zbl

[7] K. S. Ryutin, “Ravnomernaya nepreryvnost obobschennykh ratsionalnykh priblizhenii”, Matem. zametki, 71:2 (2002), 261–270 | DOI | MR | Zbl

[8] I. G. Tsarkov, “Lokalnaya i globalnaya nepreryvnaya $\varepsilon$-vyborka”, Izv. RAN. Ser. matem., 80:2 (2016), 165–184 | DOI | MR | Zbl

[9] I. G. Tsarkov, “Nepreryvnaya $\varepsilon$-vyborka”, Matem. sb., 207:2 (2016), 123–142 | DOI | MR | Zbl

[10] I. G. Tsarkov, “Svoistva mnozhestv, obladayuschikh ustoichivoi $\varepsilon$-vyborkoi”, Matem. zametki, 89:4 (2011), 608–613 | DOI | MR | Zbl

[11] E. Michael, “Continuous selections. I”, Ann. of Math. (2), 63 (1956), 361–381 | DOI | MR | Zbl

[12] I. G. Tsarkov, “O svyaznosti nekotorykh klassov mnozhestv v banakhovykh prostranstvakh”, Matem. zametki, 40:2 (1986), 174–196 | MR | Zbl

[13] A. L. Brown, “Suns in normed linear spaces which are finite-dimensional”, Math. Ann., 279 (1987), 87–101 | DOI | MR | Zbl

[14] A. R. Alimov, “Monotonnaya lineinaya svyaznost chebyshevskikh mnozhestv v prostranstve $C(Q)$”, Matem. sb., 197:9 (2006), 3–18 | DOI | MR | Zbl

[15] A. R. Alimov, “Monotonnaya lineinaya svyaznost i solnechnost svyaznykh po Mengeru mnozhestv v banakhovykh prostranstvakh”, Izv. RAN. Ser. matem., 78:4 (2014), 3–18 | DOI | MR | Zbl

[16] A. R. Alimov, V. Yu. Protasov, “Otdelimost vypuklykh mnozhestv ekstremalnymi giperploskostyami”, Fundament. i prikl. matem., 17:4 (2012), 3–12