On the Hamiltonian Property of Linear Dynamical Systems in Hilbert Space
Matematičeskie zametki, Tome 101 (2017) no. 6, pp. 911-918.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions for the operator differential equation $\dot x=Ax$ possessing a quadratic first integral $(1/2)(Bx,x)$ to be Hamiltonian are obtained. In the finite-dimensional case, it suffices to require that $\ker B \subset \ker A^*$. For a bounded linear mapping $x\to \Omega x$ possessing a first integral, sufficient conditions for the preservation of the (possibly degenerate) Poisson bracket are obtained.
Keywords: Hamiltonian system, symplectic structure.
Mots-clés : Poisson bracket
@article{MZM_2017_101_6_a10,
     author = {D. V. Treschev and A. A. Shkalikov},
     title = {On the {Hamiltonian} {Property} of {Linear} {Dynamical} {Systems} in {Hilbert} {Space}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {911--918},
     publisher = {mathdoc},
     volume = {101},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a10/}
}
TY  - JOUR
AU  - D. V. Treschev
AU  - A. A. Shkalikov
TI  - On the Hamiltonian Property of Linear Dynamical Systems in Hilbert Space
JO  - Matematičeskie zametki
PY  - 2017
SP  - 911
EP  - 918
VL  - 101
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a10/
LA  - ru
ID  - MZM_2017_101_6_a10
ER  - 
%0 Journal Article
%A D. V. Treschev
%A A. A. Shkalikov
%T On the Hamiltonian Property of Linear Dynamical Systems in Hilbert Space
%J Matematičeskie zametki
%D 2017
%P 911-918
%V 101
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a10/
%G ru
%F MZM_2017_101_6_a10
D. V. Treschev; A. A. Shkalikov. On the Hamiltonian Property of Linear Dynamical Systems in Hilbert Space. Matematičeskie zametki, Tome 101 (2017) no. 6, pp. 911-918. http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a10/

[1] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[2] V. V. Kozlov, “Lineinye sistemy s kvadratichnym integralom”, PMM, 56:6 (1992), 900–906 | MR | Zbl

[3] F. Riss, B. Sekefalvi-Nad, Lektsii po funktsionalnomu analizu, Mir, M., 1979 | MR

[4] V. V. Kozlov, “Spektralnye svoistva operatorov s polinomialnymi invariantami v veschestvennykh konechnomernykh prostranstvakh”, Differentsialnye uravneniya i topologiya. I, Tr. MIAN, 268, MAIK, M., 2010, 155–167 | MR | Zbl

[5] J. Bognar, Indefinite Inner Product Spaces, Ergeb. Math. Grenzgeb., 78, Springer-Verlag, New York, 1974 | MR | Zbl

[6] T. Ya. Azizov, I. S. Iokhvidov, Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986 | MR | Zbl

[7] V. I. Derguzov, “Ob ustoichivosti reshenii uravnenii Gamiltona s neogranichennymi periodicheskimi operatornymi koeffitsientami”, Matem. sb., 63 (105):4 (1964), 591–619 | MR | Zbl