On the Hamiltonian Property of Linear Dynamical Systems in Hilbert Space
Matematičeskie zametki, Tome 101 (2017) no. 6, pp. 911-918
Voir la notice de l'article provenant de la source Math-Net.Ru
Conditions for the operator differential equation $\dot x=Ax$ possessing a quadratic first integral $(1/2)(Bx,x)$ to be Hamiltonian are obtained. In the finite-dimensional case, it suffices to require that $\ker B \subset \ker A^*$. For a bounded linear mapping $x\to \Omega x$ possessing a first integral, sufficient conditions for the preservation of the (possibly degenerate) Poisson bracket are obtained.
Keywords:
Hamiltonian system, symplectic structure.
Mots-clés : Poisson bracket
Mots-clés : Poisson bracket
@article{MZM_2017_101_6_a10,
author = {D. V. Treschev and A. A. Shkalikov},
title = {On the {Hamiltonian} {Property} of {Linear} {Dynamical} {Systems} in {Hilbert} {Space}},
journal = {Matemati\v{c}eskie zametki},
pages = {911--918},
publisher = {mathdoc},
volume = {101},
number = {6},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a10/}
}
TY - JOUR AU - D. V. Treschev AU - A. A. Shkalikov TI - On the Hamiltonian Property of Linear Dynamical Systems in Hilbert Space JO - Matematičeskie zametki PY - 2017 SP - 911 EP - 918 VL - 101 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a10/ LA - ru ID - MZM_2017_101_6_a10 ER -
D. V. Treschev; A. A. Shkalikov. On the Hamiltonian Property of Linear Dynamical Systems in Hilbert Space. Matematičeskie zametki, Tome 101 (2017) no. 6, pp. 911-918. http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a10/