On Exact Solutions of a Sobolev Equation
Matematičeskie zametki, Tome 101 (2017) no. 6, pp. 807-822
Voir la notice de l'article provenant de la source Math-Net.Ru
A nonlinear Sobolev-type equation that can be used to describe nonstationary processes in the semiconductor medium is studied. A number of families of exact solutions of this equation that can be expressed in terms of elementary functions and quadratures is obtained; some of these families contain arbitrary sufficiently smooth functions of one argument. The qualitative behavior of the resulting solutions is analyzed.
Keywords:
Sobolev space, nonlinear differential equation, algebraic and differential nonlinearities, blow-up of a solution.
@article{MZM_2017_101_6_a1,
author = {A. I. Aristov},
title = {On {Exact} {Solutions} of a {Sobolev} {Equation}},
journal = {Matemati\v{c}eskie zametki},
pages = {807--822},
publisher = {mathdoc},
volume = {101},
number = {6},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a1/}
}
A. I. Aristov. On Exact Solutions of a Sobolev Equation. Matematičeskie zametki, Tome 101 (2017) no. 6, pp. 807-822. http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a1/