Operator Inclusions and Quasi-Variational Inequalities
Matematičeskie zametki, Tome 101 (2017) no. 5, pp. 750-767.

Voir la notice de l'article provenant de la source Math-Net.Ru

The operator inclusion $0\in A(x)+N(x)$ is studied. The main results are concerned with the case where $A$ is a bounded monotone-type operator from a reflexive space to its dual and $N$ is a cone-valued operator. A criterion for this inclusion to have no solutions is obtained. Additive and homotopy-invariant integer characteristics of set-valued maps are introduced. Applications to the theory of quasi-variational inequalities with set-valued operators are given.
Keywords: operator inclusion, quasi-variational inequality, vector field, convex set.
Mots-clés : multimap
@article{MZM_2017_101_5_a9,
     author = {V. S. Klimov},
     title = {Operator {Inclusions} and {Quasi-Variational} {Inequalities}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {750--767},
     publisher = {mathdoc},
     volume = {101},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a9/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - Operator Inclusions and Quasi-Variational Inequalities
JO  - Matematičeskie zametki
PY  - 2017
SP  - 750
EP  - 767
VL  - 101
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a9/
LA  - ru
ID  - MZM_2017_101_5_a9
ER  - 
%0 Journal Article
%A V. S. Klimov
%T Operator Inclusions and Quasi-Variational Inequalities
%J Matematičeskie zametki
%D 2017
%P 750-767
%V 101
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a9/
%G ru
%F MZM_2017_101_5_a9
V. S. Klimov. Operator Inclusions and Quasi-Variational Inequalities. Matematičeskie zametki, Tome 101 (2017) no. 5, pp. 750-767. http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a9/

[1] K. Baiokki, A. Kapelo, Variatsionnye i kvazivariatsionnye neravenstva. Prilozheniya k zadacham so svobodnoi granitsei, Nauka, M., 1988 | MR | Zbl

[2] A. Bensusan, Zh.-L. Lions, Impulsnoe upravlenie i kvazivaritsionnye neravenstva, Nauka, M., 1987 | MR

[3] M. A. Krasnoselskii, P. P. Zabreiko, Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR | Zbl

[4] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, URSS, M., 2005 | MR | Zbl

[5] V. V. Fedorchuk, V. V. Filippov, Obschaya topologiya. Osnovnye konstruktsii, Izd-vo Mosk. un-ta, M., 1988 | Zbl

[6] E. Michael, “Continous selections. I”, Ann. of Math. (2), 63:2 (1956), 361–382 | DOI | MR | Zbl

[7] Zh.-P. Oben, I. Ekland, Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR | Zbl

[8] J.-P. Gossez, “Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients”, Trans. Amer. Math. Soc., 190 (1974), 163–205 | DOI | MR | Zbl

[9] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl

[10] I. V. Skrypnik, Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Nauka, M., 1990 | MR | Zbl

[11] F. E. Browder, “Pseudo-monotone operators and the direct method of the calculus of variations”, Arch. Rational Mech. Anal., 38:4 (1970), 268–277 | DOI | MR | Zbl

[12] I. P. Ryazantseva, Izbrannye glavy teorii operatorov monotonnogo tipa, Izd-vo NGTU, Nizhnii Novgorod, 2008

[13] V. S. Klimov, “K zadache o periodicheskikh resheniyakh operatornykh differentsialnykh vklyuchenii”, Izv. AN SSSR. Ser. matem., 53:2 (1989), 309–327 | MR | Zbl

[14] V. S. Klimov, “Topologicheskie kharakteristiki mnogoznachnykh otobrazhenii i lipshitsevykh funktsionalov”, Izv. RAN. Ser. matem., 72:4 (2008), 97–120 | DOI | MR | Zbl

[15] V. S. Klimov, N. A. Demyankov, “Otnositelnoe vraschenie i variatsionnye neravenstva”, Izv. vuzov. Matem., 2011, no. 6, 44–54 | MR | Zbl

[16] I. Benedetti, V. Obukhovskii, “On the index of solvability for variational inequalities in Banach spaces”, Set-Valued Anal., 16:1 (2008), 67–92 | DOI | MR | Zbl

[17] F. Klark, Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl

[18] S. L. Troyanski, “On locally uniformly convex and differentiable norms in certain non-separable Banach spaces”, Studia Math., 37 (1970), 173–180 | MR | Zbl

[19] L. P. Vlasov, “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, UMN, 28:6 (174) (1973), 3–66 | MR | Zbl

[20] V. S. Klimov, N. A. Demyankov, “Diskretnye priblizheniya i periodicheskie resheniya differentsialnykh vklyuchenii”, Differents. uravneniya, 49:2 (2013), 234–244 | MR | Zbl