On the Second Cohomology of an Algebraic Group and of Its Lie Algebra in a Positive Characteristic
Matematičeskie zametki, Tome 101 (2017) no. 5, pp. 723-732.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient isomorphism conditions for the second cohomology group of an algebraic group with an irreducible root system over an algebraically closed field of characteristic $p\ge 3h-3$, where $h$ stands for the Coxeter number, and the corresponding second cohomology group of its Lie algebra with coefficients in simple modules are obtained, and also some nontrivial examples of isomorphisms of the second cohomology groups of simple modules are found. In particular, it follows from the results obtained here that, among the simple algebraic groups $\mathrm{SL}_2(k)$, $\mathrm{SL}_3(k)$, $\mathrm{SL}_4(k)$, $\mathrm{Sp}_4(k)$, and $G_2$, nontrivial isomorphisms of this kind exist for $\mathrm{SL}_4(k)$ and $G_2$ only. For $\mathrm{SL}_4(k)$, there are two simple modules with nontrivial second cohomology and, for $G_2$, there is one module of this kind. All nontrivial examples of second cohomology obtained here are one-dimensional.
Mots-clés : algebraic group, Lie algebra of an algebraic group, simple module
Keywords: second cohomology group.
@article{MZM_2017_101_5_a7,
     author = {Sh. Sh. Ibraev},
     title = {On the {Second} {Cohomology} of an {Algebraic} {Group} and of {Its} {Lie} {Algebra} in a {Positive} {Characteristic}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {723--732},
     publisher = {mathdoc},
     volume = {101},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a7/}
}
TY  - JOUR
AU  - Sh. Sh. Ibraev
TI  - On the Second Cohomology of an Algebraic Group and of Its Lie Algebra in a Positive Characteristic
JO  - Matematičeskie zametki
PY  - 2017
SP  - 723
EP  - 732
VL  - 101
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a7/
LA  - ru
ID  - MZM_2017_101_5_a7
ER  - 
%0 Journal Article
%A Sh. Sh. Ibraev
%T On the Second Cohomology of an Algebraic Group and of Its Lie Algebra in a Positive Characteristic
%J Matematičeskie zametki
%D 2017
%P 723-732
%V 101
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a7/
%G ru
%F MZM_2017_101_5_a7
Sh. Sh. Ibraev. On the Second Cohomology of an Algebraic Group and of Its Lie Algebra in a Positive Characteristic. Matematičeskie zametki, Tome 101 (2017) no. 5, pp. 723-732. http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a7/

[1] Sh. Sh. Ibraev, “O pervoi kogomologii algebraicheskoi gruppy i ee algebry Li v polozhitelnoi kharakteristike”, Matem. zametki, 96:4 (2014), 512–521 | DOI | MR | Zbl

[2] N. Dzhekobson, Algebry Li, Mir, M., 1964 | MR | Zbl

[3] A. S. Dzhumadildaev, “O kogomologiyakh modulyarnykh algebr Li”, Matem. sb., 119 (161):1 (9) (1982), 132–149 | MR | Zbl

[4] J. C. Jantzen, Representations of Algebraic Groups, Pure Appl. Math., 131, Academic Press, Boston, MA, 1987 | MR | Zbl

[5] G. Hochschild, “Cohomology of restricted Lie algebras”, Amer. J. Math., 76 (1954), 555–580 | DOI | MR | Zbl

[6] J. B. Sullivan, “Frobenius operations on Hochschild cohomology”, Amer. J. Math., 102:4 (1980), 765–780 | DOI | MR | Zbl

[7] H. H. Andersen, “Extensions of modules for algebraic groups”, Amer. J. Math., 106:2 (1984), 489–504 | DOI | MR | Zbl

[8] H. H. Andersen, J. C. Jantzen, “Cohomology of induced representations for algebraic groups”, Math. Ann., 269:4 (1984), 487–525 | DOI | MR | Zbl

[9] S. Kumar, N. Lauritzen, J. F. Thomsen, “Frobenius splitting of cotangent bundles of flag varietes”, Invent. Math., 136:3 (1999), 603–621 | DOI | MR | Zbl

[10] J. O'Halloran, “Weyl modules and the cohomology of Chevalley groups”, Amer. J. Math., 103:2 (1981), 399–410 | DOI | MR | Zbl

[11] D. I. Stewart, “The second cohomology of simple $\mathrm{SL}_2$-modules”, Proc. Amer. Math. Soc., 138:2 (2010), 427–434 | DOI | MR | Zbl

[12] D. I. Stewart, “The second cohomology of simple $\mathrm{SL}_3$-modules”, Comm. Algebra, 40:12 (2012), 4702–4716 | DOI | MR | Zbl

[13] S. S. Ibraev, “The second cohomology groups of simple modules for $G_2$”, Sib. elektron. matem. izv., 8 (2011), 381–396 | MR | Zbl

[14] S. S. Ibraev, “The second cohomology groups of simple modules over $\mathrm{Sp}_4(k)$”, Comm. Algebra, 40:3 (2012), 1122–1130 | DOI | MR | Zbl

[15] J. C. Jantzen, “Weyl modules for groups of Lie type”, Finite Simple Groups II, Academic Press, London, 1980, 291–300 | Zbl

[16] J. C. Jantzen, “First cohomology groups for classical Lie algebras”, Representation Theory of Finite Groups and Finite-Dimensional Algebras, Progr. Math., 95, Birkhäuser, Basel, 1991, 289–315 | MR | Zbl