Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_101_5_a7, author = {Sh. Sh. Ibraev}, title = {On the {Second} {Cohomology} of an {Algebraic} {Group} and of {Its} {Lie} {Algebra} in a {Positive} {Characteristic}}, journal = {Matemati\v{c}eskie zametki}, pages = {723--732}, publisher = {mathdoc}, volume = {101}, number = {5}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a7/} }
TY - JOUR AU - Sh. Sh. Ibraev TI - On the Second Cohomology of an Algebraic Group and of Its Lie Algebra in a Positive Characteristic JO - Matematičeskie zametki PY - 2017 SP - 723 EP - 732 VL - 101 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a7/ LA - ru ID - MZM_2017_101_5_a7 ER -
Sh. Sh. Ibraev. On the Second Cohomology of an Algebraic Group and of Its Lie Algebra in a Positive Characteristic. Matematičeskie zametki, Tome 101 (2017) no. 5, pp. 723-732. http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a7/
[1] Sh. Sh. Ibraev, “O pervoi kogomologii algebraicheskoi gruppy i ee algebry Li v polozhitelnoi kharakteristike”, Matem. zametki, 96:4 (2014), 512–521 | DOI | MR | Zbl
[2] N. Dzhekobson, Algebry Li, Mir, M., 1964 | MR | Zbl
[3] A. S. Dzhumadildaev, “O kogomologiyakh modulyarnykh algebr Li”, Matem. sb., 119 (161):1 (9) (1982), 132–149 | MR | Zbl
[4] J. C. Jantzen, Representations of Algebraic Groups, Pure Appl. Math., 131, Academic Press, Boston, MA, 1987 | MR | Zbl
[5] G. Hochschild, “Cohomology of restricted Lie algebras”, Amer. J. Math., 76 (1954), 555–580 | DOI | MR | Zbl
[6] J. B. Sullivan, “Frobenius operations on Hochschild cohomology”, Amer. J. Math., 102:4 (1980), 765–780 | DOI | MR | Zbl
[7] H. H. Andersen, “Extensions of modules for algebraic groups”, Amer. J. Math., 106:2 (1984), 489–504 | DOI | MR | Zbl
[8] H. H. Andersen, J. C. Jantzen, “Cohomology of induced representations for algebraic groups”, Math. Ann., 269:4 (1984), 487–525 | DOI | MR | Zbl
[9] S. Kumar, N. Lauritzen, J. F. Thomsen, “Frobenius splitting of cotangent bundles of flag varietes”, Invent. Math., 136:3 (1999), 603–621 | DOI | MR | Zbl
[10] J. O'Halloran, “Weyl modules and the cohomology of Chevalley groups”, Amer. J. Math., 103:2 (1981), 399–410 | DOI | MR | Zbl
[11] D. I. Stewart, “The second cohomology of simple $\mathrm{SL}_2$-modules”, Proc. Amer. Math. Soc., 138:2 (2010), 427–434 | DOI | MR | Zbl
[12] D. I. Stewart, “The second cohomology of simple $\mathrm{SL}_3$-modules”, Comm. Algebra, 40:12 (2012), 4702–4716 | DOI | MR | Zbl
[13] S. S. Ibraev, “The second cohomology groups of simple modules for $G_2$”, Sib. elektron. matem. izv., 8 (2011), 381–396 | MR | Zbl
[14] S. S. Ibraev, “The second cohomology groups of simple modules over $\mathrm{Sp}_4(k)$”, Comm. Algebra, 40:3 (2012), 1122–1130 | DOI | MR | Zbl
[15] J. C. Jantzen, “Weyl modules for groups of Lie type”, Finite Simple Groups II, Academic Press, London, 1980, 291–300 | Zbl
[16] J. C. Jantzen, “First cohomology groups for classical Lie algebras”, Representation Theory of Finite Groups and Finite-Dimensional Algebras, Progr. Math., 95, Birkhäuser, Basel, 1991, 289–315 | MR | Zbl