Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_101_5_a4, author = {V. V. Gorbatsevich}, title = {Lie {Algebras} with {Abelian} {Centralizers}}, journal = {Matemati\v{c}eskie zametki}, pages = {690--699}, publisher = {mathdoc}, volume = {101}, number = {5}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a4/} }
V. V. Gorbatsevich. Lie Algebras with Abelian Centralizers. Matematičeskie zametki, Tome 101 (2017) no. 5, pp. 690-699. http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a4/
[1] I. Klep, P. Moravec, “Lie algebras with abelian centralizers”, Algebra Colloq., 17:4 (2010), 629–636 | DOI | MR | Zbl
[2] I. V. Arzhantsev, E. A. Makedonskii, A. P. Petravchuk, “Finite-dimensional subalgebras in polynomial Lie algebras of rank one”, Ukr. matem. zhurn., 63:5 (2011), 708–712 | MR | Zbl
[3] M. Suzuki, “The nonexistence of a certain type of simple groups of odd order”, Proc. Amer. Math. Soc., 8 (1957), 686–695 | DOI | MR | Zbl
[4] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989 | MR | Zbl
[5] I. M. Gelfand, V. A. Ponomarev, “Zamechaniya o klassifikatsii pary kommutiruyuschikh lineinykh preobrazovanii v konechnomernom prostranstve”, Funkts. analiz i ego pril., 3:4 (1969), 81–82 | MR | Zbl
[6] S. Li, Simmetrii differentsialnykh uravnenii. Lektsii o differentsialnykh uravneniyakh s izvestnymi infinitezimalnymi preobrazovaniyami, Tom 1, NITs Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2011