A Regular Differential Operator with Perturbed Boundary Condition
Matematičeskie zametki, Tome 101 (2017) no. 5, pp. 768-778.

Voir la notice de l'article provenant de la source Math-Net.Ru

The operator $\mathcal{L}_{0}$ generated by a linear ordinary differential expression of $n$th order and regular boundary conditions of general form is considered on a closed interval. The characteristic determinant of the spectral problem for the operator $\mathcal{L}_{1}$, where $\mathcal{L}_{1}$ is an operator with the integral perturbation of one of its boundary conditions, is constructed, assuming that the unperturbed operator $\mathcal{L}_{0}$ possesses a system of eigenfunctions and associated functions generating an unconditional basis in $L_{2}(0,1)$. Using the obtained formula, we derive conclusions about the stability or instability of the unconditional basis properties of the system of eigenfunctions and associated functions of the problem under an integral perturbation of the boundary condition. The Samarskii–Ionkin problem with integral perturbation of its boundary condition is used as an example of the application of the formula. \renewcommand{\qed}
Keywords: basis, regular boundary condition, eigenvalue, root function, spectral problem, integral perturbation of the boundary condition, characteristic determinant.
@article{MZM_2017_101_5_a10,
     author = {M. A. Sadybekov and N. S. Imanbaev},
     title = {A {Regular} {Differential} {Operator} with {Perturbed} {Boundary} {Condition}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {768--778},
     publisher = {mathdoc},
     volume = {101},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a10/}
}
TY  - JOUR
AU  - M. A. Sadybekov
AU  - N. S. Imanbaev
TI  - A Regular Differential Operator with Perturbed Boundary Condition
JO  - Matematičeskie zametki
PY  - 2017
SP  - 768
EP  - 778
VL  - 101
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a10/
LA  - ru
ID  - MZM_2017_101_5_a10
ER  - 
%0 Journal Article
%A M. A. Sadybekov
%A N. S. Imanbaev
%T A Regular Differential Operator with Perturbed Boundary Condition
%J Matematičeskie zametki
%D 2017
%P 768-778
%V 101
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a10/
%G ru
%F MZM_2017_101_5_a10
M. A. Sadybekov; N. S. Imanbaev. A Regular Differential Operator with Perturbed Boundary Condition. Matematičeskie zametki, Tome 101 (2017) no. 5, pp. 768-778. http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a10/

[1] A. A. Shkalikov, “O bazisnosti sobstvennykh funktsii obyknovennykh differentsialnykh operatorov s integralnymi kraevymi usloviyami”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1982, no. 6, 12–21 | MR | Zbl

[2] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl

[3] A. A. Shkalikov, “O bazisnosti sobstvennykh funktsii obyknovennogo differentsialnogo operatora”, UMN, 34:5 (209) (1979), 235–236 | MR | Zbl

[4] V. P. Mikhailov, “O bazisakh Rissa v $L_{2}(0,1)$”, Dokl. AN SSSR, 144:5 (1962), 981–984 | MR

[5] G. M. Keselman, “O bezuslovnoi skhodimosti razlozhenii po sobstvennym funktsiyam nekotorykh differentsialnykh operatorov”, Izv. vuzov. Matem., 1964, no. 2, 82–93 | MR | Zbl

[6] A. S. Makin, “O nelokalnom vozmuschenii periodicheskoi zadachi na sobstvennye znacheniya”, Differents. uravneniya, 42:4 (2006), 560–562 | MR | Zbl

[7] N. S. Imanbaev, M. A. Sadybekov, “Ob ustoichivosti svoistva bazisnosti odnogo tipa zadach na sobstvennye znacheniya pri nelokalnom vozmuschenii kraevogo usloviya”, Ufimsk. matem. zhurn., 3:2 (2011), 28–33 | MR | Zbl

[8] M. A. Sadybekov, N. S. Imanbaev, “O bazisnosti kornevykh funktsii periodicheskoi zadachi s integralnym vozmuscheniem kraevogo usloviya”, Differents. uravneniya, 48:6 (2012), 889–893 | MR | Zbl

[9] N. S. Imanbaev, M. A. Sadybekov, “On spectral properties of a periodic problem with an integral perturbation of the boundary condition”, Eurasian Math. J., 4:3 (2013), 53–62 | MR | Zbl

[10] A. M. Krall, “The development of general differential and general differential-boundary systems”, Rocky Mountain J. Math., 5:4 (1975), 493–542 | DOI | MR | Zbl

[11] O. A. Veliev, A. A. Shkalikov, “O bazisnosti Rissa sobstvennykh i prisoedinennykh funktsii periodicheskoi i antiperiodicheskoi zadach Shturma–Liuvillya”, Matem. zametki, 85:5 (2009), 671–686 | DOI | MR | Zbl

[12] Funktsionalnyi analiz, ed. S. G. Krein, Nauka, M., 1972 | MR | Zbl