On the Spectrum of an Odd-Order Differential Operator
Matematičeskie zametki, Tome 101 (2017) no. 5, pp. 643-646

Voir la notice de l'article provenant de la source Math-Net.Ru

Operators generated by a differential expression on a finite closed interval are considered. It is shown that, for any odd integer $n$, there exist differential operators of order $n$ whose spectrum fills the whole complex plane.
Keywords: eigenvalues, degenerate boundary conditions, odd-order differential equations.
@article{MZM_2017_101_5_a0,
     author = {A. M. Akhtyamov},
     title = {On the {Spectrum} of an {Odd-Order} {Differential} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--646},
     publisher = {mathdoc},
     volume = {101},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a0/}
}
TY  - JOUR
AU  - A. M. Akhtyamov
TI  - On the Spectrum of an Odd-Order Differential Operator
JO  - Matematičeskie zametki
PY  - 2017
SP  - 643
EP  - 646
VL  - 101
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a0/
LA  - ru
ID  - MZM_2017_101_5_a0
ER  - 
%0 Journal Article
%A A. M. Akhtyamov
%T On the Spectrum of an Odd-Order Differential Operator
%J Matematičeskie zametki
%D 2017
%P 643-646
%V 101
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a0/
%G ru
%F MZM_2017_101_5_a0
A. M. Akhtyamov. On the Spectrum of an Odd-Order Differential Operator. Matematičeskie zametki, Tome 101 (2017) no. 5, pp. 643-646. http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a0/