On the Definability of Completely Decomposable Torsion-Free Abelian Groups by Endomorphism Rings and Some Groups of Homomorphisms
Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 576-581

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we describe conditions on a vector group $C$ which are necessary and sufficient for the class of completely decomposable torsion-free Abelian groups to be a $_CEH$-class.
Keywords: completely decomposable Abelian group, group of homomorphisms, endomorphism ring, definability of Abelian groups.
@article{MZM_2017_101_4_a6,
     author = {T. A. Pushkova and A. M. Sebel'din},
     title = {On the {Definability} of {Completely} {Decomposable} {Torsion-Free} {Abelian} {Groups} by {Endomorphism} {Rings} and {Some} {Groups} of {Homomorphisms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {576--581},
     publisher = {mathdoc},
     volume = {101},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a6/}
}
TY  - JOUR
AU  - T. A. Pushkova
AU  - A. M. Sebel'din
TI  - On the Definability of Completely Decomposable Torsion-Free Abelian Groups by Endomorphism Rings and Some Groups of Homomorphisms
JO  - Matematičeskie zametki
PY  - 2017
SP  - 576
EP  - 581
VL  - 101
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a6/
LA  - ru
ID  - MZM_2017_101_4_a6
ER  - 
%0 Journal Article
%A T. A. Pushkova
%A A. M. Sebel'din
%T On the Definability of Completely Decomposable Torsion-Free Abelian Groups by Endomorphism Rings and Some Groups of Homomorphisms
%J Matematičeskie zametki
%D 2017
%P 576-581
%V 101
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a6/
%G ru
%F MZM_2017_101_4_a6
T. A. Pushkova; A. M. Sebel'din. On the Definability of Completely Decomposable Torsion-Free Abelian Groups by Endomorphism Rings and Some Groups of Homomorphisms. Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 576-581. http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a6/