On the Spectral Abscissa and the Logarithmic Norm
Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 562-575.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, both well-known and new properties of the spectral abscissa and the logarithmic norm are described. In addition to well-known formulas for the norm of a matrix and for its logarithmic norm in cubic, octahedral, spherical norms, various estimates for these quantities in an arbitrary Hölder norm are proved.
Keywords: spectral radius and the norm of a matrix, spectral abscissa and the logarithmic norm of a matrix, Young's inequality, Hölder's inequality, Riesz theorem, Hölder norm.
@article{MZM_2017_101_4_a5,
     author = {A. I. Perov and I. D. Kostrub},
     title = {On the {Spectral} {Abscissa} and the {Logarithmic} {Norm}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {562--575},
     publisher = {mathdoc},
     volume = {101},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a5/}
}
TY  - JOUR
AU  - A. I. Perov
AU  - I. D. Kostrub
TI  - On the Spectral Abscissa and the Logarithmic Norm
JO  - Matematičeskie zametki
PY  - 2017
SP  - 562
EP  - 575
VL  - 101
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a5/
LA  - ru
ID  - MZM_2017_101_4_a5
ER  - 
%0 Journal Article
%A A. I. Perov
%A I. D. Kostrub
%T On the Spectral Abscissa and the Logarithmic Norm
%J Matematičeskie zametki
%D 2017
%P 562-575
%V 101
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a5/
%G ru
%F MZM_2017_101_4_a5
A. I. Perov; I. D. Kostrub. On the Spectral Abscissa and the Logarithmic Norm. Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 562-575. http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a5/

[1] A. Wintner, “Asymptotic integration constant”, Amer. J. Math., 68 (1946), 553–559 | DOI | MR | Zbl

[2] T. Ważewski, “Sur la limitation des intégrales des systèmes d'équations différentielles linéaires ordinaires”, Studia Math., 1948, no. 10, 48–59 | MR | Zbl

[3] S. M. Lozinskii, “Otsenka pogreshnosti chislennogo integrirovaniya obyknovennykh differentsialnykh uravnenii. I”, Izv. vuzov. Matem., 1958, no. 5, 52–90 | MR | Zbl

[4] G. Dahlquist, Stability and Error Bounds in the Numerical Integration of Ordinary Differential Equations, Kungl. Tekn. Högsk. Handl. Stockholm. Vol. 130, Stockholm, 1959 | MR | Zbl

[5] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nelineinyi analiz i ego prilozheniya, Nauka, M., 1970 | MR | Zbl

[6] A. I. Perov, “Novye priznaki ustoichivosti lineinykh sistem s postoyannymi koeffitsientami”, Avtomat. i telemekh., 2002, no. 2, 22–33 | MR | Zbl

[7] B. F. Bylov, R. E. Vinograd, D. M. Grobman, V. V. Nemytskii, Teoriya pokazatelei Lyapunova i ee prilozheniya k voprosam ustoichivosti, M., Nauka, 1966 | MR | Zbl

[8] I. G. Petrovskii, Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1970 | MR | Zbl

[9] A. V. Borovskikh, A. I. Perov, Lektsii po obyknovennym differentsialnym uravneniyam, Voronezh, IPTs VGU, 2013

[10] I. M. Glazman, Yu. I. Lyubich, Konechnomernyi lineinyi analiz v zadachakh, M., Nauka, 1969 | MR | Zbl

[11] S. M. Lozinskii, “Zamechanie o state V. S. Godlevskogo”, Zh. vychisl. matem. i matem. fiz., 13:2 (1973), 457–459 | MR | Zbl

[12] A. B. Antonevich, Ya. V. Radyno, Funktsionalnyi analiz i integralnye uravneniya, Minsk, Universitetskoe, 1984 | Zbl

[13] G. G. Khardi, Dzh. E. Littlvud, G. Polia, Neravenstva, IL, M., 1948 | MR | Zbl

[14] M. Parodi, Lokalizatsiya kharakteristicheskikh chisel matrits i ee prilozheniya, M., IL, 1960 | MR | Zbl

[15] D. K. Faddeev, V. N. Faddeeva, Vychislitelnye metody lineinoi algebry, M.–L., Fizmatgiz, 1963 | MR | Zbl

[16] Dzh. Littvuld, Matematicheskaya smes, M., Nauka, 1973 | MR