On the Spectral Abscissa and the Logarithmic Norm
Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 562-575
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, both well-known and new properties of the spectral abscissa and the logarithmic norm are described. In addition to well-known formulas for the norm of a matrix and for its logarithmic norm in cubic, octahedral, spherical norms, various estimates for these quantities in an arbitrary Hölder norm are proved.
Keywords:
spectral radius and the norm of a matrix, spectral abscissa and the logarithmic norm of a matrix, Young's inequality, Hölder's inequality, Riesz theorem, Hölder norm.
@article{MZM_2017_101_4_a5,
author = {A. I. Perov and I. D. Kostrub},
title = {On the {Spectral} {Abscissa} and the {Logarithmic} {Norm}},
journal = {Matemati\v{c}eskie zametki},
pages = {562--575},
publisher = {mathdoc},
volume = {101},
number = {4},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a5/}
}
A. I. Perov; I. D. Kostrub. On the Spectral Abscissa and the Logarithmic Norm. Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 562-575. http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a5/