On Strong Convergence of Attractors of Navier--Stokes Equations in the Limit of Vanishing Viscosity
Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 635-639.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Navier–Stokes and Euler equations, attractors, energy equality.
@article{MZM_2017_101_4_a12,
     author = {A. A. Ilyin and V. V. Chepyzhov},
     title = {On {Strong} {Convergence} of {Attractors} of {Navier--Stokes} {Equations} in the {Limit} of {Vanishing} {Viscosity}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {635--639},
     publisher = {mathdoc},
     volume = {101},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a12/}
}
TY  - JOUR
AU  - A. A. Ilyin
AU  - V. V. Chepyzhov
TI  - On Strong Convergence of Attractors of Navier--Stokes Equations in the Limit of Vanishing Viscosity
JO  - Matematičeskie zametki
PY  - 2017
SP  - 635
EP  - 639
VL  - 101
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a12/
LA  - ru
ID  - MZM_2017_101_4_a12
ER  - 
%0 Journal Article
%A A. A. Ilyin
%A V. V. Chepyzhov
%T On Strong Convergence of Attractors of Navier--Stokes Equations in the Limit of Vanishing Viscosity
%J Matematičeskie zametki
%D 2017
%P 635-639
%V 101
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a12/
%G ru
%F MZM_2017_101_4_a12
A. A. Ilyin; V. V. Chepyzhov. On Strong Convergence of Attractors of Navier--Stokes Equations in the Limit of Vanishing Viscosity. Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 635-639. http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a12/

[1] A. A. Ilin, Matem. sb., 182:12 (1991), 1729–1739 | MR | Zbl

[2] V. V. Chepyzhov, M. I. Vishik, S. V. Zelik, J. Math. Pures Appl. (9), 96:4 (2011), 395–407 | DOI | MR | Zbl

[3] A. A. Ilyin, A. Miranville, E. S. Titi, Commun. Math. Sci., 2:3 (2004), 403–426 | DOI | MR | Zbl

[4] V. V. Chepyzhov, M. I. Vishik, Russ. J. Math. Phys., 15:2 (2008), 156–170 | DOI | MR | Zbl

[5] V. V. Chepyzhov, A. A. Ilyin, S. V. Zelik, “Strong trajectory and global $\mathbf{W}^{1,p}$-attractors for the damped-driven Euler system in $\mathbb R^2$”, Discrete Contin. Dyn. Syst. Ser. B (to appear)

[6] P. Constantin, F. Ramos, Comm. Math. Phys., 275:2 (2007), 529–551 | DOI | MR | Zbl

[7] A. Ilyin, K. Patni, S. Zelik, Discrete Contin. Dyn. Syst., 36:4 (2016), 2085–2102 | DOI | MR | Zbl

[8] R. J. DiPerna, P.-L. Lions, Invent. Math., 98:3 (1989), 511–547 | DOI | MR | Zbl

[9] A. V. Babin, M. I. Vishik, Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl

[10] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci., 68, New York, Springer, 1997 | MR | Zbl

[11] A. V. Babin, M. I. Vishik, Matem. sb., 126 (168):3 (1985), 397–419 | MR | Zbl

[12] P. O. Kasyanov, Matem. zametki, 92:2 (2012), 225–240 | DOI | MR | Zbl

[13] V. V. Chepyzhov, M. I. Vishik, Attractors for Equations of Mathematical Physics, Amer. Math. Soc. Colloq. Publ., 49, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[14] R. Rosa, Nonlinear Anal., 32:1 (1998), 71–85 | DOI | MR | Zbl

[15] R. Temam, Uravnenie Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl