Another Note on the Embedding of the Sobolev Space for the Limiting Exponent
Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 503-515
Voir la notice de l'article provenant de la source Math-Net.Ru
The embedding of the Sobolev spaces $W_p^s(\mathbb{R}^n)$ in a Lizorkin-type space of locally summable functions of zero smoothness is established. This result is extended to the case of the embedding of Sobolev spaces on nonregular domains of $n$-dimensional Euclidean space. The formulation of the theorem depends on the geometric parameters of the domain of the functions.
Keywords:
Sobolev space, Lizorkin space, embedding theorem, zero smoothness.
@article{MZM_2017_101_4_a1,
author = {O. V. Besov},
title = {Another {Note} on the {Embedding} of the {Sobolev} {Space} for the {Limiting} {Exponent}},
journal = {Matemati\v{c}eskie zametki},
pages = {503--515},
publisher = {mathdoc},
volume = {101},
number = {4},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a1/}
}
O. V. Besov. Another Note on the Embedding of the Sobolev Space for the Limiting Exponent. Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 503-515. http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a1/